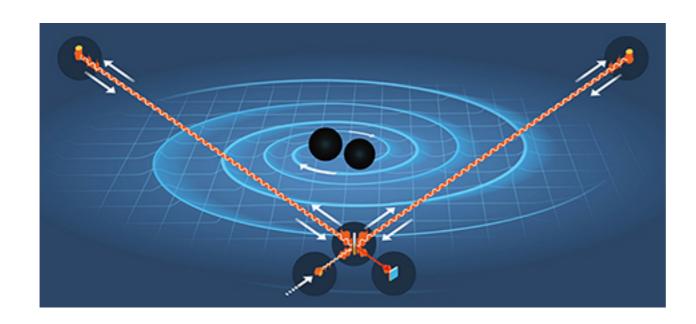
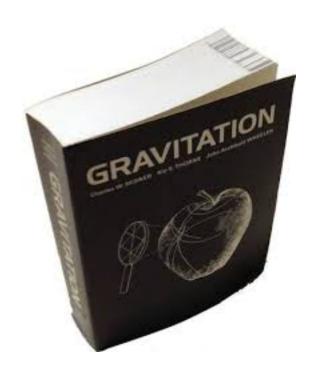
PHY489/1489: LECTURE 8

ELECTRON-POSITRON ANNIHILATION

NOBEL PRIZE 2017





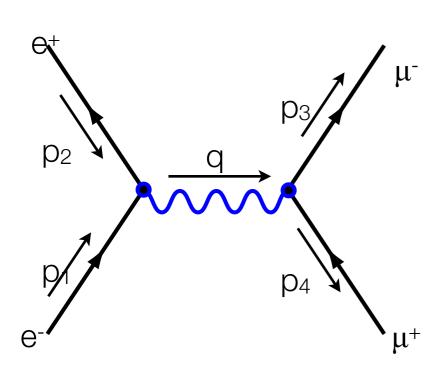
LAST TIME:

- We defined a procedure through which we can calculate the amplitude for an electromagnetic interaction
 - This is "quantum electrodynamics"
 - Procedure will look very similar for our weak and strong interactions
- There was a question of why we end up with an extra δ function, $(2\pi)^4$, etc.
 - The Feynman rules in the text book do not have the δ functions at the vertex, so don't end up with this additional factor
 - keep track of the energy/momentum conservation "by hand"
 - I prefer to keep them around as a bookkeeping/check, but the price is the extra factor in the end, but do as you please!

ANNOUNCEMENTS

- Problem set 2 is posted
- I will have to end office hours a bit early today
 - need to head out to the airport around ~1515.

$e^++e^- \rightarrow \mu^+ + \mu^-$



$$\frac{1}{(2\pi)^4} \int d^4q \, \frac{-ig_{\mu\nu}}{q^2}
\bar{u}(3) \, ig_e \gamma^{\mu} \, v(4) \, (2\pi)^4 \delta^4(q - p_3 - p_4)
\bar{v}(2) \, ig_e \gamma^{\nu} \, u(1) \, (2\pi)^4 \delta^4(p_1 + p_2 - q)$$

$$[\bar{u}(3) \gamma^{\mu} v(4)] g_{\mu\nu} [\bar{v}(2) \gamma^{\nu} u(1)]$$
$$i(2\pi)^{4} \delta^{4}(p_{1} + p_{2} - p_{3} - p_{4}) \times \frac{g_{e}^{2}}{(p_{1} + p_{2})^{2}}$$

$$\mathcal{M} = -\frac{g_e^2}{(p_1 + p_2)^2} \left[\bar{u}(3) \ \gamma^{\mu} \ v(4) \right] \left[\bar{v}(2) \ \gamma_{\mu} \ u(1) \right]$$

• Consider this process in the center-of-mass frame at higher energies so that $E>>m_e,m_\mu$

WHAT TO DO WITH THIS?

- We need to evaluate the amplitude
- Recall the cross section expression:

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} \frac{|\mathbf{p_f}|}{|\mathbf{p_i}|} |\mathcal{M}|^2$$

$$\sigma = \frac{S}{4\sqrt{(p_1 \cdot p_2)^2 - (m_1 m_2)^2}} \times \int |\mathcal{M}|^2 \times (2\pi)^4 \delta^4(p_1^\mu + p_2^\mu - \sum_f p_f^\mu)$$

$$\times \prod_{j=3}^{N} \frac{1}{2\sqrt{\mathbf{p}_{j}^{2}+m_{j}^{2}}} \frac{d^{3}\mathbf{p}_{j}}{(2\pi)^{3}}$$

- Need to calculate $|M|^2$ and put it into the phase space expression
- What expressions should we use for the spinors?
 - Recall that a Dirac particle basically has three properties
 - particle or antiparticle
 - spin (1/2)
 - momentum

REMINDER OF DIRAC SPINORS

 We had previously constructed helicity states of a Dirac particle along the z-axis

electrons

"positive" energy solutions
$$u_1 = \sqrt{E+m} \left(\begin{array}{c} 1 \\ 0 \\ p_z/(E+m) \\ (p_x+ip_y)/(E+m) \end{array} \right) \qquad u_2 = \sqrt{E+m} \left(\begin{array}{c} 0 \\ 1 \\ (p_x-ip_y)/(E+m) \\ -p_z/(E+m) \end{array} \right)$$

$$v_2 \equiv u_3 = \sqrt{E+m} \left(\begin{array}{c} p_z/(E+m) \\ (p_x+ip_y)/(E+m) \\ 1 \\ 0 \end{array} \right) \quad v_1 \equiv u_4 = \sqrt{E+m} \left(\begin{array}{c} (p_x-ip_y)/(E+m) \\ -p_z/(E+m) \\ 0 \\ 1 \end{array} \right)$$
 "negative" energy solutions

positrons

HELICITY OPERATOR:

- Recall that helicity is the projection of the spin onto the direction of motion
- In considering the angular momentum properties, we introduced the spin operator:

$$\mathbf{S} = \frac{\hbar}{2} \left(\begin{array}{cc} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{array} \right)$$

 So if we want to project this along the direction of the momentum, we have

$$\mathbf{h} = \frac{1}{|\mathbf{p}|} \mathbf{S} \cdot \mathbf{p} = \frac{\hbar}{2|\mathbf{p}|} \begin{pmatrix} \vec{\sigma} \cdot \mathbf{p} & 0 \\ 0 & \vec{\sigma} \cdot \mathbf{p} \end{pmatrix}$$

 $s = \sin \theta/2$

 $c = \cos \theta/2$

HELICITY EIGENSTATES

- By applying h to a hypothesized spinor, we can derive the eigenstates
- With polar coordinates:
 - θ = polar angle to z axis

•
$$\phi$$
 = azimuthal angle atan(p_y/p_x)

$$u_{\uparrow} = \sqrt{E+m} \begin{pmatrix} \cos\frac{\theta}{2} \\ e^{i\phi}\sin\frac{\theta}{2} \\ \frac{p}{E+m}\cos\frac{\theta}{2} \\ \frac{p}{E+m}e^{i\phi}\sin\frac{\theta}{2} \end{pmatrix} \qquad u_{\downarrow} = \sqrt{E+m} \begin{pmatrix} -\sin\frac{\theta}{2} \\ e^{i\phi}\cos\frac{\theta}{2} \\ \frac{p}{E+m}\sin\frac{\theta}{2} \\ -\frac{p}{E+m}e^{i\phi}\cos\frac{\theta}{2} \end{pmatrix}$$

$$v_{\uparrow} = \sqrt{E + m} \begin{pmatrix} -\frac{\frac{P}{E + m}s}{\frac{p}{E + m}}e^{i\phi}c \\ -s \\ ce^{i\phi} \end{pmatrix}$$

$$v_{\uparrow} = \sqrt{E+m} \left(\begin{array}{c} -rac{P}{E+m} s \\ -rac{p}{E+m} e^{i\phi} c \\ -s \\ ce^{i\phi} \end{array} \right) \qquad v_{\downarrow} = \sqrt{E+m} \left(\begin{array}{c} rac{P}{E+m} c \\ rac{p}{E+m} e^{i\phi} s \\ c \\ se^{i\phi} \end{array} \right)$$

RELATIVISTIC LIMIT

• If E >> m

$$u_{\uparrow} = \sqrt{E + m} \begin{pmatrix} c \\ se^{i\phi} \\ \frac{p}{E + m} c \\ \frac{p}{E + m} e^{i\phi} s \end{pmatrix} \longrightarrow u_{\uparrow} = \sqrt{E} \begin{pmatrix} c \\ se^{i\phi} \\ c \\ e^{i\phi} s \end{pmatrix}$$

$$u_{\downarrow} = \sqrt{E + m} \begin{pmatrix} -s \\ ce^{i\phi} \\ \frac{p}{E + m} s \\ -\frac{p}{E + m} e^{i\phi} c \end{pmatrix} \longrightarrow u_{\downarrow} = \sqrt{E} \begin{pmatrix} -s \\ ce^{i\phi} \\ s \\ -e^{i\phi} c \end{pmatrix}$$

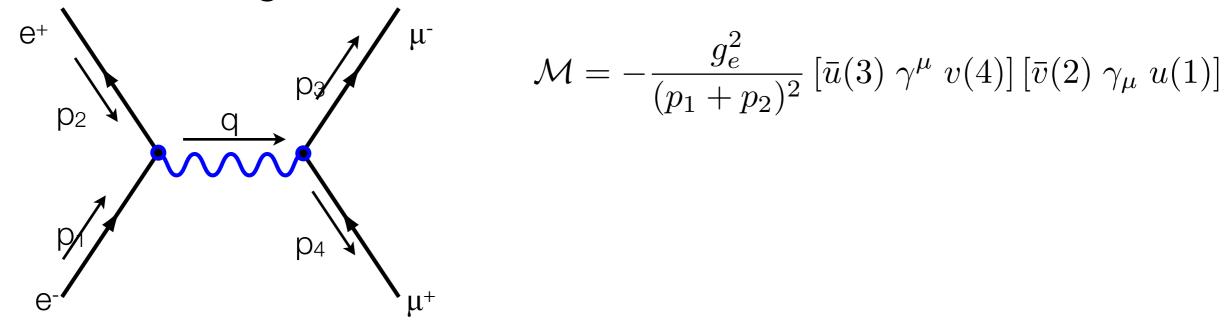
$$v_{\uparrow} = \sqrt{E + m} \begin{pmatrix} \frac{p}{E + m} s \\ -\frac{p}{E + m} e^{i\phi} c \\ -s \\ ce^{i\phi} \end{pmatrix} \longrightarrow v_{\uparrow} = \sqrt{E} \begin{pmatrix} s \\ -ce^{i\phi} \\ -s \\ e^{i\phi} c \end{pmatrix}$$

$$v_{\uparrow} = \sqrt{E + m} \begin{pmatrix} \frac{p}{E + m} c \\ -s \\ e^{i\phi} c \end{pmatrix}$$

$$v_{\uparrow} = \sqrt{E} \begin{pmatrix} c \\ se^{i\phi} \\ -s \\ e^{i\phi} c \end{pmatrix}$$

INCOMING SPINORS

- Initial state: put it along the z-axis
 - incoming electron (θ =0, ϕ = 0)



$$\mathcal{M} = -\frac{g_e^2}{(p_1 + p_2)^2} \left[\bar{u}(3) \ \gamma^{\mu} \ v(4) \right] \left[\bar{v}(2) \ \gamma_{\mu} \ u(1) \right]$$

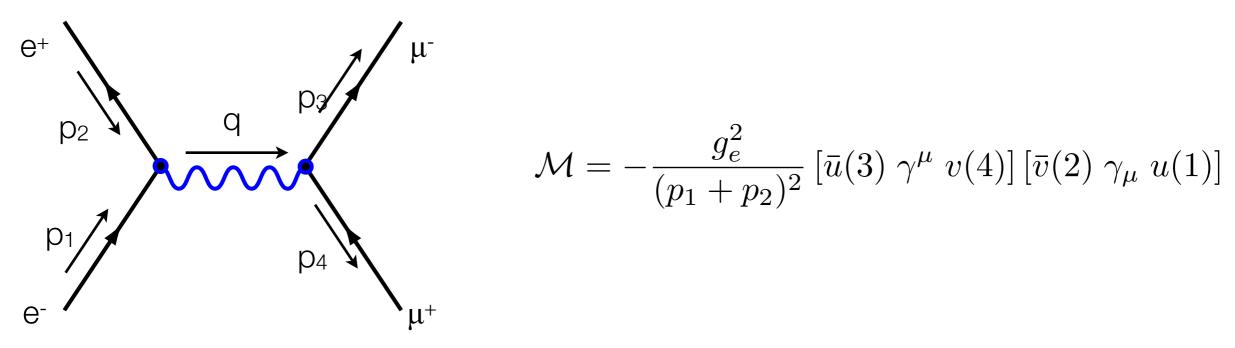
incoming positron ($\theta = \pi$, $\phi = \pi$) (recall half angles for θ)

$$u_{\uparrow}(p_1) = \sqrt{E_1} \begin{pmatrix} c_1 \\ s_1 e^{i\phi_1} \\ c_1 \\ e^{i\phi_1} s_1 \end{pmatrix} \Rightarrow \sqrt{E_1} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad u_{\downarrow}(p_1) = \sqrt{E_1} \begin{pmatrix} -s \\ c_1 e^{i\phi_1} \\ s_1 \\ -c^{i\phi_1} s_1 \end{pmatrix} \Rightarrow \sqrt{E_1} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}$$

$$v_{\uparrow}(p_2) = \sqrt{E_2} \begin{pmatrix} s_2 \\ -ce^{i\phi_2} \\ -s_2 \\ c_2e^{i\phi_2} \end{pmatrix} \Rightarrow \sqrt{E_2} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} \qquad v_{\downarrow}(p_2) = \sqrt{E_2} \begin{pmatrix} c_2 \\ s_2e^{i\phi_2} \\ c_2 \\ e^{i\phi_2}s_2 \end{pmatrix} \Rightarrow \sqrt{E_2} \begin{pmatrix} 0 \\ -1 \\ 0 \\ -1 \end{pmatrix}$$

OUTGOING SPINORS

- Outgoing state:
 - incoming electron (θ_3 , 0)



• incoming positron ($\theta_4=\pi$ - θ_3 , $\phi=\pi$) (recall half angles for θ)

$$u_{\uparrow}(p_{3}) = \sqrt{E_{3}} \begin{pmatrix} c_{3} \\ s_{3}e^{i\phi_{3}} \\ c_{3} \\ s_{3}e^{i\phi_{3}} \end{pmatrix} \Rightarrow \sqrt{E_{3}} \begin{pmatrix} c_{3} \\ s_{3} \\ c_{3} \\ s_{3} \end{pmatrix} \qquad u_{\downarrow}(p_{3}) = \sqrt{E_{3}} \begin{pmatrix} -s_{3} \\ c_{3}e^{i\phi_{3}} \\ s_{3} \\ -c_{3}e^{i\phi_{3}} \end{pmatrix} \Rightarrow \sqrt{E_{3}} \begin{pmatrix} -s_{3} \\ c_{3} \\ s_{3} \\ -c_{3} \end{pmatrix}$$

$$v_{\uparrow}(p_4) = \sqrt{E_4} \begin{pmatrix} s_4 \\ -c_4 e^{i\phi_4} \\ -s_4 \\ c_4 e^{i\phi_4} \end{pmatrix} \Rightarrow \sqrt{E_4} \begin{pmatrix} c_3 \\ s_3 \\ -c_3 \\ -s_3 \end{pmatrix} \qquad v_{\downarrow}(p_4) = \sqrt{E_4} \begin{pmatrix} c_4 \\ s_4 e^{i\phi_4} \\ c_4 \\ s_4 e^{i\phi_4} \end{pmatrix} \Rightarrow \sqrt{E_4} \begin{pmatrix} s_3 \\ -c_3 \\ s_3 \\ -c_3 \end{pmatrix}$$

HELICITY COMBINATIONS

 Now we can consider any combinations of helicities by placing the appropriate spinors in the expression

$$\mathcal{M} = -\frac{g_e^2}{(p_1 + p_2)^2} \left[\bar{u}(3) \, \overset{\text{J} \mu}{\gamma^{\mu}} \, v(4) \right] \left[\bar{v}(2) \, \overset{\text{J} e}{\gamma_{\mu}} \, u(1) \right]$$

We will consider products like

$$\bar{\psi}\gamma^{\mu}\phi = \psi^{\dagger}\gamma^{0}\gamma^{\mu}\phi$$

$$\bar{\psi}\gamma^0\phi = \psi^{\dagger}\gamma^0\gamma^0\phi = \psi_1^*\phi_1 + \psi_2^*\phi_2 + \psi_3^*\phi_3 + \psi_4^*\phi_4$$

$$\bar{\psi}\gamma^{1}\phi = \psi^{\dagger}\gamma^{0}\gamma^{1}\phi = \psi_{1}^{*}\phi_{4} + \psi_{2}^{*}\phi_{3} + \psi_{3}^{*}\phi_{2} + \psi_{4}^{*}\phi_{1}$$

$$\bar{\psi}\gamma^2\phi = \psi^{\dagger}\gamma^0\gamma^2\phi = -i(\psi_1^*\phi_4 - \psi_2^*\phi_3 + \psi_3^*\phi_2 - \psi_4^*\phi_1)$$

$$\bar{\psi}\gamma^{3}\phi = \psi^{\dagger}\gamma^{0}\gamma^{3}\phi = \psi_{1}^{*}\phi_{3} - \psi_{2}^{*}\phi_{4} + \psi_{3}^{*}\phi_{1} - \psi_{4}^{*}\phi_{2}$$

$$\gamma^0 = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right)$$

$$\gamma^1 = \left(\begin{array}{cccc} 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & -1 & 0 & 0\\ -1 & 0 & 0 & 0 \end{array}\right)$$

$$\gamma^2 = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix}$$

$$\gamma^3 = \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right)$$

j μ

The "↑↓" or "RL" combination

$$u_R = \sqrt{E} \begin{pmatrix} c_3 \\ s_3 \\ c_3 \\ s_3 \end{pmatrix} \qquad v_L = \sqrt{E} \begin{pmatrix} s_3 \\ -c_3 \\ s_3 \\ -c_3 \end{pmatrix}$$
$$\bar{u}_R \gamma^{\mu} v_L$$

$$\bar{u}_R \gamma^0 v_L = E \times (cs - cs + cs - cs) = 0$$
$$= \psi_1^* \phi_1 + \psi_2^* \phi_2 + \psi_3^* \phi_3 + \psi_4^* \phi_4$$

$$\bar{u}_R \gamma^1 v_L = E \times (-c^2 + s^2 - c^2 + s^2) = 2E(s^2 - c^2) = -2E \cos \theta$$
$$= \psi_1^* \phi_4 + \psi_2^* \phi_3 + \psi_3^* \phi_2 + \psi_4^* \phi_1$$

$$\bar{u}_R \gamma^2 v_L = -iE \times (-c^2 - s^2 - c^2 - s^2) = 2ie(c^2 + s^2) = 2iE$$

$$= -i(\psi_1^* \phi_4 - \psi_2^* \phi_3 + \psi_3^* \phi_2 - \psi_4^* \phi_1)$$

$$\bar{u}_R \gamma^\mu v_L = 2E(0, -\cos\theta, i, \sin\theta)$$

$$\bar{u}_R \gamma^3 v_L = E \times (cs + sc + cs + sc = 4Esc = 2E \sin \theta)$$
$$= \psi_1^* \phi_3 - \psi_2^* \phi_4 + \psi_3^* \phi_1 - \psi_4^* \phi_2$$

$$\bar{u}_L \gamma^{\mu} v_R = 2E(0, -\cos\theta, -i, \sin\theta)$$

$$\bar{u}_R \gamma^{\mu} v_R = 2E(0, 0, 0, 0)$$

$$\bar{u}_L \gamma^{\mu} v_L = 2E(0, 0, 0, 0)$$

jе

By the same methods, can show: e⁺e⁻

$$\bar{v}_L \gamma^\mu u_L = 2E(0, 0, 0, 0)$$
 $\bar{v}_R \gamma^\mu u_R = 2E(0, 0, 0, 0)$
 $\bar{v}_L \gamma^\mu u_R = 2E(0, -1, i, 0)$ $\bar{v}_R \gamma^\mu u_L = 2E(0, -1, -i, 0)$

• and we can combine with j_{μ} to get the amplitude for any particular helicity combination $\mu^{+}\mu^{-}$

$$\bar{u}_{R}\gamma^{\mu}v_{L} = 2E(0, -\cos\theta, i, \sin\theta) \qquad \bar{u}_{L}\gamma^{\mu}v_{R} = 2E(0, -\cos\theta, -i, \sin\theta)$$

$$\mathcal{M}_{LR\to LR} = -\frac{e^{2}}{4E^{2}}[\bar{u}_{3L}\gamma^{\mu}v_{4R}] \ [\bar{v}_{2R}\gamma_{\mu}u_{1L}] \qquad \mathcal{M}_{LR\to RL} = -\frac{e^{2}}{4E^{2}}[\bar{u}_{3R}\gamma^{\mu}v_{4L}] \ [\bar{v}_{2R}\gamma_{\mu}u_{1L}]$$

$$= -\frac{4e^{2}E^{2}}{(p_{1} + p_{2})^{2}}(0 - \cos\theta - 1, 0) \qquad \qquad = -e^{2} \times (0 - \cos\theta + 1 + 0)$$

$$= e^{2}(1 + \cos\theta) = \mathcal{M}_{RL\to RL} \qquad \qquad = e^{2} \times (-\cos\theta + 1)$$

$$= \mathcal{M}_{RL\to LR}$$

ENDGAME

- Put these into our differential cross section:
 - and recall that $s = (p_1+p_2)^2 = (2E)^2 = s$ $\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} \frac{|\mathbf{p_f}|}{|\mathbf{p_i}|} |\mathcal{M}|^2$

$$|\mathcal{M}_{LR\to LR}|^2 = |\mathcal{M}_{RL\to RL}|^2 = e^4(1+\cos\theta)^2$$

$$|\mathcal{M}_{LR\to RL}|^2 = |\mathcal{M}_{RL\to LR}|^2 = e^4 (1 - \cos\theta)^2$$

$$\frac{d\sigma}{d\Omega} = \frac{e^4}{256\pi^2 E^2} (1 \pm \cos\theta)^2$$

- The unpolarized spin-averaged cross section
 - if we detect all outgoing helicity states, add up all the contributions
 - if the beams are unpolarized (i.e. initial states are half of each helicity), each helicity combination is 1/4 of the total beam, so we divide by 4

$$\frac{d\sigma}{d\Omega} = \frac{e^4}{64\pi^2 s} (1 + \cos^2 \theta)$$

NEXT TIME

- Please read rest of Chapter 6
- avatar