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LAST TIME:

* We defined a procedure through which we can calculate
the amplitude for an electromagnetic interaction

e Thisis “quantum electrodynamics”

* Procedure will look very similar tor our weak and strong
Interactions

e There was a question of why we end up with an extra ©
function, (2%, etc.

* The Feynman rules in the text book do not have the © functions
at the vertex, so don't end up with this additional factor

* keep track of the energy/momentum conservation “by hand”

* | prefer to keep them around as a bookkeeping/check, but the
price is the extra factor in the end, but do as you please!



ANNOUNCEMENTS

* Problem set 2 is posted

* | will have to end oftice hours a bit early today

* need to head out to the airport around ~1515.
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* Consider this process in the center-of-mass frame at higher energies so that E>>me,m,



WHAT TO DO WITH THIS?

* We need to evaluate the amplitude

e Recall the cross section expression: ;Z_g _ 6471725 “I;f" M
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* Need to calculate |[M|?2 and put it into the phase space expression

* What expressions should we use for the spinors?

e Recall that a Dirac particle basically has three properties
* particle or antiparticle
* spin (1/2)

* momentum



REMINDER OF DIRAC SPINORS

* We had previously constructed helicity states of a

Dirac particle along the z-axis
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HELICITY OPERATOR: Ch4.8

e Recall that helicity is the projection of the spin onto
the direction of motion

* In considering the angular momentum properties, we
introduced the spin operator:
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* So if we want to project this along the direction of the
momentum, we have
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HELICITY EIGENSTATES = n48

e By applying h to a hypothesized spinor, we can derive
the eigenstates

e With polar coordinates:

e @ = polarangle to z axis s = sin §/2
* ¢ = azimuthal angle atan(p,/px) C = cos 6/2
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RELATIVISTIC LIMIT
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INCOMING SPINORS

* Initial state: put it along the z-axis

* incoming electron (6=0, ¢ = 0)

= 7t) (recall halt angles for 6)
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OUTGOING SPINORS

e Qutgoing state:

e incoming electron (63, 0)
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HELICITY COMBINATIONS

 Now we can consider any combinations of helicities by
placing the appropriate spinors in the expression
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e The “T1" or "RL"” combination
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j°eBy the same methods, can show: erer
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* and we can combine with j, to get the amplitude for
any particular helicity combination
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ENDGAME

e Put these into our differential cross section:

e andrecall that s = (p1+p2)?=(2E)2=s
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* The unpolarized spin-averaged cross section
* if we detect all outgoing helicity states, add up all the contributions

* if the beams are unpolarized (i.e. initial states are half of each helicity),
each helicity combination is 1/4 of the total beam, so we divide by 4
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NEXT TIME
* Please read rest of Chapter 6
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