PHYSICS 489/1489
LECTURE 7:
QUANTUM ELECTRODYNAMICS

REMINDER

- Problem set 1 due today
- 1700 in Box F

TODAY:

- We investigated the Dirac equation
- it describes a relativistic spin $1 / 2$ particle
- implies the existence of antiparticle states
- derived plane wave states for the equation
- Today we explore the electromagnetic field
- wave equation, polarization
- how a charged Dirac particle interacts with the field
- Recall the Golden rule
- Rate ~ phase space \times |matrix element $\left.\right|^{2}$
- We know how to deal with the phase space
- today we see how to derive the matrix element

APOLOGIES:

- This will contain (hopefully) the sketchiest "derivations" and discussion of material
- The book does some detailed handwaving to derive the matrix element
- I will handwave over the handwaving
- A proper treatment requires quantum field theory
- For the rest of the class, the important thing to get out of this are the Feynman rules which give us a systematic way of determining the amplitude
- deriving the Feynman rules is out of the scope of our class

THE PHOTON

- Maxwell's equations:

$$
\begin{array}{ll}
\nabla \cdot \mathbf{E}=4 \pi \rho & \nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{E}+\dot{\mathbf{B}}=0 & \nabla \times \mathbf{B}-\dot{\mathbf{E}}=4 \pi \mathbf{J}
\end{array}
$$

- Recall that we can re-express the Maxwell equations using potentials:

$$
\mathbf{E}=-\nabla \phi \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

- these can in turn be combined to make a 4 vector:
- Likewise for the "source" terms ρ and \mathbf{J} :

$$
\begin{aligned}
A^{\mu} & =(\phi, \mathbf{A}) \\
J^{\mu} & =(\rho, \mathbf{J})
\end{aligned}
$$

MAXWELL'S EQUATION

- All four equations can be expressed as:

$$
\partial_{\mu} \partial^{\mu} A^{\nu}-\partial^{\nu}\left(\partial_{\mu} A^{\mu}\right)=\frac{4 \pi}{c} J^{\nu} \quad F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}=
$$

- The issue is that A is (far) from unique:
- Consider: $A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \lambda$

$$
\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

$$
\partial_{\mu} \partial^{\mu}\left(A^{\nu}+\partial^{\nu} \lambda\right)-\partial^{\nu}\left(\partial_{\mu}\left(A^{\mu}+\partial^{\mu} \lambda\right)=\partial_{\mu} \partial^{\mu} A^{\nu}-\partial^{\nu}\left(\partial_{\mu}\left(A^{\mu}\right)+\partial_{\mu} \partial^{\mu} \partial^{\nu} \lambda-\partial^{\nu} \partial_{\mu} \partial^{\mu} \lambda\right.\right.
$$

- last terms cancel, so "new" A_{μ} is also a solution to Maxwell's equation
- they are physically the same, so we can make some conventions:
- "Lorentz gauge condition": $\partial_{\mu} A^{\mu}=0$
- "Coulomb gauge"

$$
A^{0}=0
$$

$$
\begin{aligned}
\partial_{\mu} \partial^{\mu} A^{\nu} & =\frac{4 \pi}{c} J^{\nu} \\
\nabla \cdot \mathbf{A} & =0
\end{aligned}
$$

"FREE" SOLUTIONS

- "Free" means no sources (charges, currents): Ju=0
- Find solution by ansatz:

$$
\partial^{\mu} \partial_{\mu} A^{\nu}=0
$$

$$
A^{\mu}(x)=a e^{-i p \cdot x} \epsilon^{\mu}(p)
$$

- Now check:

$$
\begin{array}{ll}
\partial_{\mu} A^{\nu}(x)=-i p_{\mu} a e^{-i p \cdot x} \epsilon^{\nu}(p) & \partial_{\mu} A^{\mu}=0 \Rightarrow p_{\mu} \epsilon^{\mu}(p)=0 \\
\partial^{\mu} \partial_{\mu} A^{\nu}(x)=(-i)^{2} p^{\mu} p_{\mu} a e^{-i p \cdot x} \epsilon^{\nu}(p)=0 & p^{2}=m^{2} c^{2}=0 \\
& A^{0}=0 \Rightarrow \epsilon^{0}=0 \\
\text { Conclusions: } & \\
& \Rightarrow \mathbf{p} \cdot \epsilon=0
\end{array}
$$

- Photon is massless
- Polarization ε is transverse to photon direction (in Coulomb gauge):
- it has two degrees of freedom/polarizations

REMINDER OF DIRAC SPINORS

- Plane wave states

electrons

"positive" energy solutions

$$
u_{1}=\sqrt{E+m}\left(\begin{array}{c}
1 \\
0 \\
p_{z} /(E+m) \\
\left(p_{x}+i p_{y}\right) /(E+m)
\end{array}\right)
$$

$v_{2} \equiv u_{3}=\sqrt{E+m}\left(\begin{array}{c}p_{z} /(E+m) \\ \left(p_{x}+i p_{y}\right) /(E+m) \\ 1 \\ 0\end{array}\right) \quad v_{1} \equiv u_{4}=\sqrt{E+m}\left(\begin{array}{c}\left(p_{x}-i p_{y}\right) /(E+m) \\ -p_{z} /(E+m) \\ 0 \\ 1\end{array}\right)$

TOWARDS AMPLITUDES:

$$
T_{f i}=\left\langle\phi_{f}\right| V\left|\phi_{i}\right\rangle+\sum_{j \neq i} \frac{\left\langle\phi_{f}\right| V\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| V\left|\phi_{i}\right\rangle}{E_{i}-E_{j}}
$$

- Previously, we saw how transitions ("interactions") in the Born approximation are related to matrix elements
- Consider the electromagnetic interaction between two charged particles
- We can guess that:
- ϕ_{i}, ϕ_{f} describe the initial and final states of these particles
- for plane waves, these are the u, v spinors we described before.
- V describes the interaction of these particles with the electromagnetic field (i.e. the photon).
- this will involve the polarization vector for the photon

E\&M WITH CHARGED DIRAC PARTICLES

$$
H_{0}=\gamma^{0}(\vec{\gamma} \cdot \mathbf{p}+m) \quad V=q \gamma^{0} \gamma^{\mu} A_{\mu} \quad A^{\mu}=(\phi, \mathbf{A})
$$

- Can be derived from "minimal substitution"

$$
\partial_{\mu} \Rightarrow \partial_{\mu}+i q A_{\mu} \quad p_{\mu} \Rightarrow p_{\mu}-q A_{\mu}
$$

- we'll see later that this can arise from "gauge invariance"
- for now, you can see:

$$
E \Rightarrow E-q \phi \quad \mathbf{p} \Rightarrow \mathbf{p}-q \mathbf{A}
$$

- i.e. impact from scalar/vector potential on the energy of the particle
- We can then express the interaction as follows

$$
\left\langle\psi_{f}\right| V\left|\psi_{i}\right\rangle \Rightarrow u_{f}^{\dagger} Q \gamma^{0} \gamma^{\mu} \epsilon_{i} u_{i} \Rightarrow Q \bar{u}_{f} \gamma^{\mu} u_{1} \epsilon_{\mu}
$$

INTERACTION BETWEEN TWO CHARGED PARTICLES VIA EM FIELD

$\left\langle\psi_{3}\right| V\left|\psi_{1}\right\rangle \Rightarrow Q \bar{u}_{3} \gamma^{\mu} u_{1} \epsilon_{\mu}$
$\left\langle\psi_{4}\right| V\left|\psi_{2}\right\rangle \Rightarrow Q \bar{u}_{4} \gamma^{\nu} u_{2} \epsilon_{\nu}$
$\frac{1}{q^{2}}$

$$
\sum_{\lambda} \epsilon_{\mu}^{(\lambda)} \epsilon_{\nu}^{(\lambda) *}=-g_{\mu \nu}
$$

- "Propagator" factor for photon
- reflects potential energy of the field
- Sum over polarizations of intermediate photon
- note that this results in "contracting" the Lorentz indices
- Accounts for both "orderings" of the photon propagation

$$
\mathcal{M}=\frac{-Q^{2}}{q^{2}}\left[\bar{u}_{3} \gamma^{\mu} u_{1}\right]\left[\bar{u}_{4} \gamma_{\mu} u_{2}\right]
$$

FEYNMAN RULES: EXTERNAL LINES

- Right down the Feynman diagram(s) for the process and label the momentum flow
- p's for external lines, q's for internal lines
- Note that there are two flows:
- "particle/antiparticle"
- momentum
- Now the components of the expression ${ }^{2} / 7$

- External Lines:
- Electrons: initial state $u^{s}(p)$ final state $\bar{u}^{s}(p)$
- Positrons: initial state $\bar{v}^{s}(p)$ final state $v^{s}(p)$
- Photons: initial state $\epsilon_{\mu}(p)$ final state $\epsilon_{\mu}^{*}(p)$

VERTICES AND PROPAGATORS

- For each QED vertex: $i g_{e} \gamma^{\mu}(2 \pi)^{4} \delta^{4}\left(k_{1}+k_{2}+k_{3}\right)$
use a different Lorentz index for each γ matrix
- momentum is "+" incoming, "-" outgoing from vertex
- g_{e} is the electromagnetic coupling (Oe)
- Internal lines:
- electron/positron propagator $\frac{i\left(\gamma^{\mu} q_{\mu}+m c\right)}{q^{2}-m^{2} c^{2}}$
- Photon propagator
- indices match vertices/polarization $\frac{-i{ }^{2}{ }^{2}}{}$

- Integral over internal momentum: $\frac{d^{4} q}{(2 \pi)^{4}}$
- Finally: cancel the overall $(2 \pi)^{4} \delta^{4}$ what remains is -iM

- Order matters due to Dirac matrix structure (photon part doesn't care)
- Go backward along the fermion lines:
- In the "final state": $\bar{u}(3) i g_{e} \gamma^{\mu} v(4)(2 \pi)^{4} \delta^{4}\left(q-p_{3}-p_{4}\right)$
- In the "initial state": $\bar{v}(2) i g_{e} \gamma^{\nu} u(1)(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-q\right)$
- Throw in the internal photon propagator: $\frac{1}{(2 \pi)^{4}} \int d^{4} q \frac{-i g_{\mu \nu}}{q^{2}}$
- integrate over internal momentum

$$
i(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \times \frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right] g_{\mu \nu}\left[\bar{v}(2) \gamma^{\nu} u(1)\right]
$$

Problem 6.5 $\quad \mathcal{M}=-\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{v}(2) \gamma_{\mu} u(1)\right]$

EXAMPLE: $e^{+}+e^{-} \rightarrow e^{+}+e^{-}$

$$
\begin{aligned}
& \bar{u}(3) i g_{e} \gamma^{\mu} u(1) \text { ve }(2) i g_{e} \gamma^{\nu} v(4) \frac{-i g_{\mu \nu}}{\left(p_{1}-p_{3}\right)^{2}} \\
& \bar{u}(3) i g_{e} \gamma^{\rho} v(4) \operatorname{v}(2) i g_{e} \gamma^{\sigma} u(1) \frac{-i g_{\rho \sigma}}{\left(p_{1}+p_{2}\right)^{2}} \\
& (2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right)
\end{aligned}
$$

A FEW MORE:

- $e^{-}+\gamma \rightarrow e^{-}+\gamma$

- $\mathrm{e}^{-}+\mu^{-} \rightarrow \mathrm{e}^{-}+\mu^{-}$

$$
\mathcal{M}=\frac{-g_{e}^{2}}{\left(p_{1}-p_{3}\right)^{2}}\left[\bar{u}_{3} \gamma^{\mu} u_{1}\right]\left[\bar{u}_{4} \gamma_{\mu} u_{2}\right]
$$

NEXT TIME:

- Please read 6.1 and 6.2
- I would explicitly work out spin summation procedure in 6.2.1 and 6.2.4

