H. A. TANAKA

LECTURE 6: MORE PROPERTIES
OF THE DIRAC EQUATION



NEXT TIME

* Please turn in PS 1 by 1700 on Thursday (28 Sep)

* Box K around the corner
* Please be sure to staple your pages
* |t you want to submit electronically, please arrange with Randly.

* rconklin@physics.utoronto.ca

e Midterm:

e Material so far:

e drawing Feynman diagrams for EM, weak, strong interactions. Allowed/
forbidden interactions

* special relativity, relativistic kinematics
* Phase space
* There will be no detailed calculations . . . ..

* necessary detailed equations will be provided.
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TRANSFORMING THE DIRAC EQUATION
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PARITY OPERATOR

e For the parity operator, invert the spatial coordinates
while keeping the time coordinate unchanged:
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We find that y0 satisfies our needs

7 =970 ="

V== =400 =



LORENTZ COVARIANT QUANTITIES

 Recall that for four vectors av, bn

* ak butranstform as Lorentz vectors
* atbyis a scalar (invariant under Lorentz transformations

e atbvis a tensor (each has a Lorentz transtformation)

* From the previous discussion, we know:

e Dirac spinors have four components, but don't transform
as Lorentz vectors

* How do combinations of Dirac spinors change under
Lorentz Transformations?



HOW DO WE CONSTRUCT A SCALAR?
* We can use yV: define: ¢ = yfr0
e Consider a Lorentz transformation with S acting on the spinor
* We can also show generally that  ST°5 =47°
 This gives us ¢y = ¢TST105y = ¢y = gy
e 5o this is a Lorentz invariant
e Using the parity operator .
e Recall Sp=v0 9= (WTSEY°)(Spy) = 17299 = T4 4 = Py

* We see that ¢y is invariant under parity



THE vOPERATOR
e Define the operator y° as: (? é)

75 — i70W1V273

e |t anticommutes with all the other y matrices:
{77’} =0
° use anti-commutation relations to move y# to the other side

o vy will anti-commute with for pzv

e yrwill commute when p=v

e Consider the quantity ¢4y

e Can show that this is invariant under Lorentz transformation.

* \What about under parity?
07" = (WIS (Spv) = (U1 Sp) Spy v = —T "y = —yy
Vy°1 is a “pseudoscalar’



OTHER COMBINATIONS

* We can use y* to make vectors and tensor quantities:

o scalar 1 component

Py pseudoscalar 1 component

Py vector 4 components

P y*~5)  pseudovector 4 components ;

YotV  antisymmetric tensor 6 components oY = —(yHyY — AV yH)

2
e Lorentz indices and y5 tell you how it transforms

* y5introduces a sign (adds a “pseudo”)

e Every combination of ¥*u;is a linear combination of the above.

* Interactions can be classified as “vector”,”pseudovector”, etc.



ANGULAR MOMENTUM AND DIRAC

e Conservation:

* In quantum mechanics, what is the condition for a quantity to
be conserved?

(H,Q] =0
* Free particle Hamiltonian in non-relativistic quantum mechanics:
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* thus we conclude that the momentum p is conserved

e |f we introduce a potential:

p2

Hop) = [+ V(@).p) = o 7" + V(@).] #0

* thus, momentum is not conserved



HAMILTONIAN

e Starting with the Dirac equation,
e determine the Hamiltonian by solving for the energy

e Hints:
(Y'pu —me)p =0 (v*)? =0

e Answer:
H=c(y-p+mc)



ORBITAL ANGULAR MOMENTUM

e We want to evaluate

e Recall: [H, I]

e which parts do not commute
[H, Li] = [e7° (apy*p” + mc) , €537 p*]

[0705ab’7apba Gijkfﬂjpk] [mc, Eijkwjpk]
Y apeisn[p’, 27 p~] (A, BC] = [A, B]C + B[A, C]
C5ab€7;jWOWa(—ih5bjpk) —ihc’yoéijwjpk —ihC’YO (¥ x P)

Orbital angular momentum is not conserved



“SPIN":

e Consider the operator:s = 55 =15 ( g g ) acting on Dirac spinors

o Satisties all properties ot an angular momentum operator.

e |Let's consider the commutator of this with the hamiltonian
A
26[

e once again, consider in component/index notation

V07 - 5+ 7 me, 5 H = cy" (v p+mc)

1,57 ="

* which part doesnt commute?
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THE “TOTAL"” SPIN OPERATOR

e Define the operator:

§2_§.S szﬁzz(“ O)
2 0 o

e Calculate its eigenvalue for an arbitrary Dirac spinor:

* |f the eigenvalue of the operator gives s(s+1), where
s is the spin, what is the spin of a Dirac particle?



NEXT TIME

e Please turn in problem set 1 by 1700 on Thursday (28
September)

e Box K around the corner

* Please read Chapter 5



