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T H E  D I R A C  E Q U AT I O N  



S O  FA R :
• Quick introduction to: 

• special relativity, relativistic kinematics 

• quantum mechanics, golden rule, etc. 

• Phase space: 

• how to set up and integrate over phase space to 
determine integrated and differential rates/cross sections 

• Now we move to the particles themselves 

• start with the Dirac equation 

• describes “spin 1/2” particles 

• quarks, leptons, neutrinos



R E L AT I V I S T I C  WAV E  F U N C T I O N

• In non-relativistic quantum mechanics, we have the Schrödinger Equation: 

• Inspired by this, Klein and Gordon (and actually Schrödinger) tried:
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I S S U E S  W I T H  K L E I N - G O R D O N
• Within the context of quantum mechanics, this had some issues: 

• As it turns out, this allows negative probability densities: 

• Dirac traced this to the fact that we had second-order time derivative 

• “factor” the E/p relation to get linear relations and obtained: 

• and found that:  

• Dirac found that these relationships could be held by matrices, 
and that the corresponding wave function must be a “vector”.
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T H E  D I R A C  E Q U AT I O N  I N  I T S  
M A N Y  F O R M S
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D I R A C  Q U O T E S :
• Q: What do you like best about America? 

• A: Potatoes. 

• Q: What is you favourite sport? 

• A: Chinese chess. 

• Q: Do you go to the movies? 

• A: Yes. 

• Q: When? 

• A: 1920, perhaps also 1930. 

• Q: How did you find the Dirac Equation? 

• A: I found it beautiful.

• Q: Professor Dirac, I did not understand  
how you derived the formula on the top left 

• A: That is not a question. It is a statement. 
Next question, please. 

• I was taught at school never to start a 
sentence without knowing the end of it. 

• “Dirac’s spoken vocabulary consists 
of “yes”, “no”, and “I don’t know.” 



“ G A M M A ”  M AT R I C E S :

• Note that this is a particular 
representation of the matrices 

• Any set of matrices satisfying the 
anti-commutation relations works 

• There are an infinite number of 
possibilities: this particular one 
(Björken-Drell) is just one example
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I N  F U L L  G L O RY

(� · p)2 = p · p(� · a)(� · b) = a · b + i� · (a⇥ b)
From problem 4.20c

�A

�B

• This is just the KG equation four times 

• Wavefunctions that satisfy the Dirac 
equation also satisfy KG 
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S O L U T I O N S  T O  T H E  D I R A C  E Q U AT I O N
• Particle at rest 

• General plane wave solution 

• A particle at rest has only time dependence. 

• The equation breaks up into two independent parts:
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D I R A C ' S  D I L E M M A
• ψB appears to have negative energy 

• Why don’t all particles fall down into these states (and down to -∞)? 

• Dirac’s excuse: all states in the universe up to a certain level (say E=0) are filled. 

• Pauli exclusion prevents collapse of states down to E = -∞ 

• We can “excite” particles out  

of the sea into free states 

This leaves a “hole” that looks like 

a particle with opposite properties 

(positive charge, opposite spin, etc.)

kF =0e
e

e

hole

Dirac originally proposed that this might be the proton
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E X C U S E  T O  T R I U M F
• 1932: Anderson finds “positrons” 

in cosmic rays 

• Exactly like electrons but  

positively charged:  

Fits what Dirac was looking for

Dirac predicts the existence 
of anti-matter and it is found





S O L U T I O N S  T O  T H E  D I R A C  E Q U AT I O N
• Note that all particles have the same mass
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P E D A G O C I A L  S O R E  P O I N T
• Discussion we had thus far about difficulties with relativistic 

equations, (negative probabilities, negative energies) is historic   

• The framework for dealing with quantum mechanics and 
special relativity (i.e. quantum field theory) had not been 
developed 

• The old tools of NR quantum mechanics had reached their limit and 
new ones were necessary. 

• In particular, the idea of a “wavefunction” had to be revisited 

• Until this was done, there were many difficulties! 

• Once QFT was developed, all of these problems go away. 

• Both KG and Dirac Equations are valid in QFT 

• No negative probabilities, no negative energies



P L A N E  WAV E  S O L U T I O N S  T O  T H E  
D I R A C  E Q U AT I O N

• Consider a solution of the form: 

• and place it in the Dirac equation:

Column vector of 4 
elements with space-
time dependence

space-time 
dependence

column 
vector

�(x) = e�ik·xu(k)

(i�µ@µ �m) = 0

(�µkµ �m)u(k) = 0(�µk
µ

�m)e�ik·xu(k) = 0



M O R E  E X P L I C I T LY:
• By definition: 

• So that the Dirac equation reads:
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D E T E R M I N G  u
• this means we can identify k ↔ ±p 

• We can now construct the column vector u:

Use positive solutions

Used negative k solutionspositrons

electrons
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N O R M A L I Z AT I O N :
• Choose “normalization” of the wavefunctions 

• Note that multiples of the solutions are still solution 

• normalization convention simply fixes this arbitrary choice: 

• for u1
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L O R E N T Z  C O VA R I A N C E
• The Dirac equation “works” in all reference frames. 

•  What exactly does this mean? 

• i, m, γ are constants that don’t change with reference frames. 

• ∂µ and ψ will change with reference frames, however.

• ∂µ is a derivative that will be taken with respect to the space-time 

coordinates in the new reference frame. We’ll call this ∂’µ

• how does ψ change? 

• ψ’ = Sψ where ψ’ is the spinor in the new reference frame

•  Putting this together, we have the following transformation 
of the equation when evaluating it in a new reference frame

What properties does S need 
to make this work?
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P R O P E RT I E S  O F  S
• In general, we know how to relate space time coordinates in one 

reference with another (i.e. Lorentz transformation), we can do 
the same for the derivatives 

• Using the chain rule, we get: 

• where we view x as a function x’ (i.e. the original coordinates as a 
function of the transformed or primed coordinates). 

• Note the summation over ν 

•  if the primed coordinates moving along the x axis with velocity β:
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T R A N S F O R M I N G  T H E  D I R A C  E Q U AT I O N

S is constant in space time, so we can 
move it to the left of the derivatives

Now slap S-1 from the left

Since these equations must be the same, S must satisfy
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PA R I T Y  O P E R AT O R
• For the parity operator, invert the spatial coordinates 

while keeping the time coordinate unchanged: 

• We then have
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N E X T  T I M E
• Read 4.6-4.9 and Chapter 5 

• Lots of notation, lots of stuff going on . . . .  

• please stop by if you have questions!


