PHY489/1489

THE DIRAC EQUATION

SO FAR:

- Quick introduction to:
- special relativity, relativistic kinematics
- quantum mechanics, golden rule, etc.
- Phase space:
- how to set up and integrate over phase space to determine integrated and differential rates/cross sections
- Now we move to the particles themselves
- start with the Dirac equation
- describes "spin 1/2" particles
- quarks, leptons, neutrinos

RELATIVISTIC WAVE FUNCTION

- In non-relativistic quantum mechanics, we have the Schrödinger Equation:

$$
\begin{gathered}
\mathbf{H} \psi=i \hbar \frac{\partial}{\partial t} \psi \quad \mathbf{H}=\frac{\mathbf{p}^{2}}{2 m} \quad \mathbf{p} \Leftrightarrow-i \hbar \nabla \\
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=i \hbar \frac{\partial}{\partial t} \psi
\end{gathered}
$$

- Inspired by this, Klein and Gordon (and actually Schrödinger) tried:

$$
\begin{aligned}
& E^{2}=\mathbf{p}^{2}+m^{2} \Rightarrow\left(-\nabla^{2}+m^{2}\right) \psi=-\frac{\partial^{2}}{\partial t^{2}} \psi \\
& \left(-\frac{\partial^{2}}{\partial t^{2}} \psi+\nabla^{2}\right) \psi=m^{2} \psi \quad \text { "Manifestly Lorentz Invariant" } \\
& \partial_{\mu} \Rightarrow\left(\partial_{0}, \partial_{1}, \partial_{2}, \partial_{3}\right)=\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \quad\left(-\partial^{\mu} \partial_{\mu}+m^{2}\right) \psi=0
\end{aligned}
$$

ISSUES WITH KLEIN-GORDON

- Within the context of quantum mechanics, this had some issues:
- As it turns out, this allows negative probability densities: $|\psi|^{2}=0$
- Dirac traced this to the fact that we had second-order time derivative
- "factor" the E/p relation to get linear relations and obtained:

$$
p_{\mu} p^{\mu}-m^{2} c^{2}=0 \Rightarrow\left(\alpha^{\kappa} p_{\kappa}+m\right)\left(\gamma^{\lambda} p_{\lambda}-m\right)
$$

- and found that:

$$
\begin{aligned}
& \alpha^{\kappa}=\gamma^{\kappa} \\
& \left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}
\end{aligned}
$$

- Dirac found that these relationships could be held by matrices, and that the corresponding wave function must be a "vector".

$$
\gamma^{\mu} p_{\mu}-m=0 \Rightarrow\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

THE DIRAC EQUATION IN ITS MANY FORMS

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0 \quad \not \subset \equiv a_{\mu} \gamma^{\mu}
$$

$$
(i \not \partial-m) \psi=0 \quad \not \subset \equiv a_{\mu} \gamma^{\mu}=a_{0} \gamma^{0}-a_{1} \gamma^{1}-a_{2} \gamma^{2}-a_{3} \gamma^{3}
$$

$$
\partial_{\mu} \Rightarrow\left(\partial_{0}, \partial_{1}, \partial_{2}, \partial_{3}\right)=\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)
$$

$$
\left[i\left(\gamma^{0} \partial_{0}-\gamma^{1} \partial_{1}-\gamma^{2} \partial_{2}-\gamma^{3} \partial_{3}\right)-m\right] \psi=0
$$

$$
\left[i\left(\gamma^{0} \frac{\partial}{\partial t}-\gamma^{1} \frac{\partial}{\partial x}-\gamma^{2} \frac{\partial}{\partial y}-\gamma^{3} \frac{\partial}{\partial z}\right)-m\right] \psi=0
$$

DIRAC QUOTES:

- Q : What do you like best about America?
- A: Potatoes.
- $\mathrm{Q}:$ What is you favourite sport?
- A: Chinese chess.
- Q: Do you go to the movies?
- A: Yes.
- $\mathrm{Q}:$ When?
- A: 1920, perhaps also 1930.
- Q: How did you find the Dirac Equation?
- A: I found it beautiful.
- "Dirac's spoken vocabulary consists of "yes", "no", and "I don't know."
- $\mathrm{Q}:$ Professor Dirac, I did not understand how you derived the formula on the top left
- A: That is not a question. It is a statement. Next question, please.
- I was taught at school never to start a sentence without knowing the end of it.

"GAMMA" MATRICES:

$$
\begin{aligned}
& \gamma^{\mu}=\left(\gamma^{0}, \gamma^{1}, \gamma^{2}, \gamma^{3}\right) \quad \vec{\sigma}=\left(\sigma^{1}, \sigma^{2}, \sigma^{3}\right)=\left[\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right] \\
& \gamma^{0}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \quad=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \gamma^{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & \sigma^{1} \\
-\sigma^{1} & 0
\end{array}\right) \\
& \gamma^{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right) \\
& \gamma^{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \\
& \text { - Note that this is a particular } \\
& \text { representation of the matrices } \\
& \text { - Any set of matrices satisfying the } \\
& \text { anti-commutation relations works } \\
& \text { - There are an infinite number of } \\
& \text { possibilities: this particular one } \\
& \text { (Björken-Drell) is just one example } \\
& \left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \\
& =\left(\begin{array}{cc}
0 & \sigma^{2} \\
-\sigma^{2} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & \sigma^{3} \\
-\sigma^{3} & 0
\end{array}\right)
\end{aligned}
$$

IN FULL GLORY

$$
\left.\left.\begin{array}{l}
\left.\left[\begin{array}{cccc}
\frac{\partial}{\partial t} & 0 & -\frac{\partial}{\partial z} & -\frac{\partial}{\partial x}+i \frac{\partial}{\partial y} \\
0 & \frac{\partial}{\partial t} & -\frac{\partial}{\partial x}-i \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial x}-i \frac{\partial}{\partial y} & \frac{\partial}{\partial t} & 0 \\
\frac{\partial}{\partial x}+i \frac{\partial}{\partial y} & -\frac{\partial}{\partial z} & 0 & -\frac{\partial}{\partial t}
\end{array}\right)-\left(\begin{array}{cccc}
m & 0 & 0 & 0 \\
0 & m & 0 & 0 \\
0 & 0 & m & 0 \\
0 & 0 & 0 & m
\end{array}\right)\right]\left(\begin{array}{l}
\psi_{A} \\
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
\psi_{B} \\
0 \\
0 \\
0
\end{array}\right) \\
\left(\begin{array}{c}
\mu
\end{array} \Leftrightarrow-\partial_{\mu}\right. \\
\left(\begin{array}{cc}
p_{0}-m & -\mathbf{p} \cdot \sigma \\
\mathbf{p} \cdot \sigma & -p_{0}-m
\end{array}\right)\binom{\psi_{A}}{\psi_{B}}=\binom{0}{0} \\
\left(\begin{array}{c}
p_{0}+m \\
\mathbf{p} \cdot \sigma
\end{array}-p_{0}+m\right.
\end{array}\right)\left(\begin{array}{cc}
p_{0}-m & -\mathbf{p} \cdot \sigma \\
\mathbf{p} \cdot \sigma & -p_{0}-m
\end{array}\right)=\left(\begin{array}{cc}
p_{0}^{2}-m^{2}-(\mathbf{p} \cdot \sigma)^{2} & 0 \\
0 & p_{0}^{2}-m^{2}-(\mathbf{p} \cdot \sigma)^{2}
\end{array}\right)\right]
$$

$$
\left(\begin{array}{cc}
p_{0}^{2}-m^{2}-\mathbf{p}^{2} & 0 \\
0 & p_{0}^{2}-m^{2}-\mathbf{p}^{2}
\end{array}\right)\binom{\psi_{A}}{\psi_{B}}=\binom{0}{0}
$$

- This is just the KG equation four times
- Wavefunctions that satisfy the Dirac equation also satisfy KG

SOLUTIONS TO THE DIRAC EQUATION

- Particle at rest
- General plane wave solution

$$
\psi(x) \sim e^{-i k \cdot x}
$$

- A particle at rest has only time dependence.
$\left(i \gamma^{0} \frac{\partial}{\partial t}-m c\right) \psi=0 \quad\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{\frac{\partial}{\partial t} \psi_{A}}{\frac{\partial}{\partial t} \psi_{B}}=-i m\binom{\frac{\partial}{\partial t} \psi_{A}}{\frac{\partial}{\partial t} \psi_{B}}$
- The equation breaks up into two independent parts:

$$
\begin{array}{lc}
\frac{\partial}{\partial t} \psi_{A}=-i m \psi_{A} & -\frac{\partial}{\partial t} \psi_{B}=-i m \psi_{B} \\
\psi_{A}=e^{-i m t} \psi_{A}(0) & \psi_{B}=e^{+i m t} \psi_{B}(0)
\end{array}
$$

DIRAC'S DILEMMA

- ψ_{B} appears to have negative energy

$$
\psi_{A}=e^{-i m t} \psi_{A}(0) \quad \psi_{B}=e^{+i m t} \psi_{B}(0)
$$

- Why don't all particles fall down into these states (and down to $-\infty$)?
- Dirac's excuse: all states in the universe up to a certain level (say $\mathrm{E}=0$) are filled.
- Pauli exclusion prevents collapse of states down to $E=-\infty$
- We can "excite" particles out of the sea into free states This leaves a "hole" that looks like a particle with opposite properties (positive charge, opposite spin, etc.)

Dirac originally proposed that this might be the proton

EXCUSE TO TRIUMF

- 1932: Anderson finds "positrons" in cosmic rays
- Exactly like electrons but positively charged:
Fits what Dirac was looking for

Dirac predicts the existence of anti-matter and it is found

$$
\square
$$

SOLUTIONS TO THE DIRAC EQUATION

- Note that all particles have the same mass

$$
\begin{aligned}
& \psi_{1}(t)=e^{-i m c^{2} t / \hbar}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad \psi_{2}(t)=e^{-i m t}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) . \quad \text { "spin down" up" }
\end{aligned}
$$

positive energy solutions (particle)
"negative" energy solutions (anti-particle)

PEDAGOCIAL SORE POINT

- Discussion we had thus far about difficulties with relativistic equations, (negative probabilities, negative energies) is historic
- The framework for dealing with quantum mechanics and special relativity (i.e. quantum field theory) had not been developed
- The old tools of NR quantum mechanics had reached their limit and new ones were necessary.
- In particular, the idea of a "wavefunction" had to be revisited
- Until this was done, there were many difficulties!
- Once QFT was developed, all of these problems go away.
- Both KG and Dirac Equations are valid in QFT
- No negative probabilities, no negative energies

PLANE WAVE SOLUTIONS TO THE DIRAC EQUATION

- Consider a solution of the form:

$$
\psi(x)=e_{\uparrow}^{-i k \cdot x} u(k) \longleftarrow \text { column }
$$

Column vector of 4 space-time elements with space- dependence time dependence

- and place it in the Dirac equation:

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

$$
\left(\gamma^{\mu} k_{\mu}-m\right) e^{-i k \cdot x} u(k) \psi=0
$$

$$
\left(\gamma^{\mu} k_{\mu}-m\right) u(k) \psi=0
$$

MORE EXPLICITLY:

- By definition:
$\gamma^{\mu} k_{\mu}=\gamma^{0} k^{0}-\gamma^{1} k^{1}-\gamma^{2} k^{2}-\gamma^{3} k^{3} \longrightarrow\left(\begin{array}{cc}k_{0} & -\mathbf{k} \cdot \sigma \\ \mathbf{k} \cdot \sigma & -k_{0}\end{array}\right)$
- So that the Dirac equation reads:

$$
\left(\gamma^{\mu} k_{\mu}-m\right) u(k)=0
$$

Note 2×2 notation

$$
u(k) \Rightarrow\binom{u_{A}}{u_{B}}
$$

$\left(\begin{array}{cc}k_{0}-m c & -\mathbf{k} \cdot \sigma \\ \mathbf{k} \cdot \sigma & -k_{0}-m c\end{array}\right)\binom{u_{A}}{u_{B}}$
$\left(k_{0}-m\right) u_{A}-(\mathbf{k} \cdot \sigma) u_{B}=0 \quad u_{A}=\frac{\mathbf{k} \cdot \sigma}{k_{0}-m} u_{B}$
$(\mathbf{k} \cdot \sigma) u_{A}-\left(k_{0}+m\right) u_{B}=0$

$$
u_{B}=\frac{\mathbf{k} \cdot \sigma}{k_{0}+m} u_{A}
$$

DETERMING u

- this means we can identify $k \leftrightarrow \pm \mathrm{p}$

$$
\begin{array}{ll}
\text { this means we can identify } \mathrm{k} \leftrightarrow \pm \mathrm{P} & \mathbf{k} \cdot \sigma \\
u_{A}=\frac{\mathbf{k} \cdot \sigma}{k_{0}-m} u_{B} \quad u_{B}=\frac{\mathbf{k} \cdot \sigma \cdot \sigma}{k_{0}+m} u_{A} & \frac{\mathbf{k} \cdot \sigma}{k_{0}+m}=1 \\
p^{\mu}= \pm k^{\mu}-m & \mathbf{p} \cdot \sigma=\left(\begin{array}{cc}
p_{z} & p_{x}-i p_{y} \\
p_{x}+i p_{y} & -p_{z}
\end{array}\right)
\end{array}
$$

- We can now construct the column vector u: electrons
$u_{1}=N\left(\begin{array}{c}1 \\ 0 \\ p_{z} /(E+m) \\ \left(p_{x}+i p_{y}\right) /(E+m)\end{array}\right) u_{2}=N\left(\begin{array}{c}0 \\ 1 \\ \left(p_{x}-i p_{y}\right) /(E+m) \\ -p_{z} /(E+m)\end{array}\right)$
positrons

$$
u_{3}=N\left(\begin{array}{c}
p_{z} /(E+m) \\
\left(p_{x}+i p_{y}\right) /(E+m) \\
1 \\
0
\end{array}\right) \quad u_{4}=N\left(\begin{array}{c}
\left(p_{x}-i p_{y}\right) /(E+m) \\
-p_{z} /(E+m) \\
0 \\
1
\end{array}\right)
$$

NORMALIZATION:

- Choose "normalization" of the wavefunctions
- Note that multiples of the solutions are still solution
- normalization convention simply fixes this arbitrary choice:

$$
u^{\dagger} u=2 E \quad u^{\dagger} \equiv\left(u^{T}\right)^{*} \quad u=\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right) \Rightarrow u^{\dagger}=\left(u_{1}^{*}, u_{2}^{*}, u_{3}^{*} u_{4}^{*}\right)
$$

- for u_{1}

$$
u_{1}^{\dagger} u_{1}=N^{2}\left[1+\frac{\mathbf{p}^{2}}{(E+m)^{2}}\right]=2 E \quad N=\sqrt{E+m}
$$

LORENTZ COVARIANCE

- The Dirac equation "works" in all reference frames.
- What exactly does this mean?

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

"Lorentz Covariant"

- i, m, γ are constants that don't change with reference frames.
- ∂_{μ} and ψ will change with reference frames, however.
- ∂_{μ} is a derivative that will be taken with respect to the space-time coordinates in the new reference frame. We'll call this $\partial^{\prime}{ }_{\mu}$
- how does ψ change?
- $\psi^{\prime}=S \psi$ where ψ^{\prime} is the spinor in the new reference frame
- Putting this together, we have the following transformation of the equation when evaluating it in a new reference frame

$$
\begin{aligned}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0 & \Rightarrow\left(i \gamma^{\mu} \partial_{\mu}^{\prime}-m\right) \psi^{\prime}=0 \\
& i \gamma^{\mu} \partial_{\mu}^{\prime}(S \psi)-m(S \psi)=0
\end{aligned}
$$

PROPERTIES OF S

- In general, we know how to relate space time coordinates in one reference with another (i.e. Lorentz transformation), we can do the same for the derivatives
- Using the chain rule, we get: $\partial_{\mu}^{\prime} \equiv \frac{\partial}{\partial x^{\mu \prime}}=\frac{\partial x^{\nu}}{\partial x^{\mu \prime}} \frac{\partial}{\partial x^{\nu}}$
- where we view x as a function x^{\prime} (i.e. the original coordinates as a function of the transformed or primed coordinates).
- Note the summation over v
- if the primed coordinates moving along the x axis with velocity β :

$$
\begin{array}{ll}
x^{0}=\gamma\left(x^{0 \prime}+\beta x^{1 \prime}\right) & (\nu=0, \mu=0) \Rightarrow \frac{\partial x^{0}}{\partial x^{0 \prime}}=\gamma \\
x^{1}=\gamma\left(x^{1 \prime}+\beta x^{0 \prime}\right) & \\
x^{2}=x^{2 \prime} & (\nu=0, \mu=1) \Rightarrow \frac{\partial x^{0}}{\partial x^{1 \prime}}=\gamma \beta \\
x^{3}=x^{3 \prime} &
\end{array}
$$

TRANSFORMING THE DIRAC EQUATION

$$
i \gamma^{\mu} \partial_{\mu} \psi-m \psi=0
$$

$$
\Rightarrow i \gamma^{\mu} \partial_{\mu}^{\prime} \psi^{\prime}-m \psi^{\prime}=0
$$

$$
i \gamma^{\mu} \partial_{\mu}^{\prime}(S \psi)-m(S \psi)=0
$$

$$
i \gamma^{\mu} \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}} \partial_{\nu}(S \psi)-m(S \psi)=0
$$

S is constant in space time, so we can move it to the left of the derivatives

$$
i \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}} \partial_{\nu} \psi-m S \psi=0
$$

Now slap S-1 from the left

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0 \quad S^{-1} \quad \rightarrow \quad i \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}} \partial_{\nu} \psi-m S \psi=0
$$

Since these equations must be the same, S must satisfy

$$
\gamma^{\nu}=S^{-1} \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}}
$$

PARITY OPERATOR

- For the parity operator, invert the spatial coordinates while keeping the time coordinate unchanged:

$$
P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \quad \begin{array}{ll}
\frac{\partial x_{0}}{\partial x_{0}{ }^{\prime}}=1 & \frac{\partial x_{1}}{\partial x_{1}{ }^{\prime}}=-1 \\
\frac{\partial x_{2}}{\partial x_{2}^{\prime}}=-1 & \frac{\partial x_{3}}{\partial x_{3}{ }^{\prime}}=-1
\end{array}
$$

- We then have

$$
\begin{array}{lll}
\gamma^{0}=S^{-1} \gamma^{0} S & \gamma^{\nu}=S^{-1} \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu \prime}} & \text { We find that } \gamma^{0} \text { satisfies } \\
\gamma^{1}=-S^{-1} \gamma^{1} S & \gamma^{0}=\gamma^{0} \gamma^{0}=\gamma^{0} \\
\gamma^{2}=-S^{-1} \gamma^{2} S & \gamma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) & \gamma^{i}=-\gamma^{0} \gamma^{i} \gamma^{0}=\gamma^{0} \gamma^{0} \\
\gamma^{3}=-S^{-1} \gamma^{3} S & \left(\gamma^{0}\right)^{2}=1 & \\
& \left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \Rightarrow \gamma^{0} \gamma^{i}=-\gamma^{i} \gamma^{0} & S_{P}=\gamma^{0}
\end{array}
$$

NEXT TIME

- Read 4.6-4.9 and Chapter 5
- Lots of notation, lots of stuff going on
- please stop by if you have questions!

