H. A. TANAKA: PHY 489/1489

LECTURE 4: PHASE SPACE IN DECAYS

LAST TIME:

- We reviewed some basic quantum mechanics
- hamiltonian, time evolution
- angular momentum, Pauli matrices
- Transition rates, Born approximation, golden rule
- Decay rates
- Today:
- phase space
- decay rate formula
- (scattering rate)
- sorry, no pizza

SCATTERING RATES

- Send in particles on a "target" and study what comes out
- if particles are "hard spheres", projectile is infinitesimal

- Probability of interaction: area of target/unit area:
- area of target particle = "cross section" σ
- Rate \propto rate of incoming particles:
- Flux $\phi=$ particles/unit area/time $\sim n_{i} \vee$

MORE THAN ONE TARGET

- More than one "layer" of target particles
- More than one target per unit area.

- Rate \propto targets in the column swept by the incoming beam
- Rate $=\mathrm{N}_{T} /$ Unit Area $\times \sigma \times \phi=\mathrm{n} \mid \sigma \phi$
- $\mathrm{n}=$ number density of target particles, $\mathrm{I}=$ length of target
- Rate/volume $=$ n $\sigma \phi$

COLLIDING BEAMS:

- In this case, the relative velocity between the two particles determines the flux:
- $\phi=\mathrm{n}_{\mathrm{a}}\left(\mathrm{v}_{\mathrm{a}}+\mathrm{v}_{\mathrm{b}}\right)$
- Rate $=n_{a}\left(v_{a}+v_{b}\right) n_{b} \sigma$

DIFFERENTIAL CROSS SECTION

- In hard sphere scattering, something "happening" is binary:
- If the balls hit each other, then something happened
- otherwise, nothing happened
- Generalize: considering "differential cross section."
- Probability that particle ends up in a particular part of phase space
- e.g.. a particular momentum/angle range.

$$
\sigma \Rightarrow \frac{d^{3} \sigma}{d \Omega d p} \quad \begin{aligned}
& d \Omega=\sin \theta d \theta d \phi=d \cos \theta d \phi \\
& \text { "solid angle" }
\end{aligned}
$$

- Notation lends itself to "integrating" over a phase space variable: say we don't care about the momentum but only the angle:

$$
\frac{d \sigma}{d \Omega}=\int p^{2} d p \frac{d^{3} \sigma}{d \Omega d p}
$$

TOTAL CROSS SECTION

- "total cross section"
- integrate over all phase space

$$
\sigma_{T O T}=\int p^{2} d p d \phi d \cos \theta \frac{d^{3} \sigma}{d \Omega d p}
$$

- cross section for a particle to end up anywhere
- For "infinite range" interactions, the total cross section can be infinite; i.e. "something" always happens
- Reflects the fact that no matter how far you are away, there is still some electric field that will deflect your particle.

GOLDEN RULE

- Fermi's golden rule states that the probability of a transition in quantum mechanics is given by the product of:
- The absolute value of the matrix element (a k a amplitude) squared
- The available density of states.

$$
P \propto|\mathcal{M}|^{2} \times \rho
$$

$P \propto|\mathcal{M}|^{2}$

$P \propto 2 \times|\mathcal{M}|^{2}$

$P \propto \int|\mathcal{M}(E)|^{2} \rho(E) d E$

- Typically a decay of a particle into states with lighter product masses has more "phase space" and more likely to occur.
- Let's see how to calculate the phase space
- we'll learn how to calculate amplitudes later.

PRODUCT OF PHASE SPACE

Initial State

- What is net phase space for the particle $1,2,3$ to end up in particular places?
- 0 if energy and momentum are not conserved
- 0 if particles are not on "mass shell"
- Otherwise, the product of the individual phase spaces:

$$
\rho=\rho_{1}\left(p_{1}^{\mu}\right) \times \rho_{2}\left(p_{2}^{\mu}\right) \times \rho_{3}\left(p_{3}^{\mu}\right)
$$

integral extends over region satisfying kinematic constraints

$$
\rho_{\text {tot }}=\int_{\text {allowed }} \frac{d^{4} p_{1}}{(2 \pi)^{4}} \frac{d^{4} p_{2}}{(2 \pi)^{4}} \frac{d^{4} p_{3}}{(2 \pi)^{4}} \rho_{1}\left(p_{1}^{\mu}\right) \rho_{2}\left(p_{2}^{\mu}\right) \rho_{3}\left(p_{3}^{\mu}\right)
$$

PHASE SPACE IN DECAYS

Symmetry factor
\downarrow Matrix element factor (function of kinematics, polarizations, etc.)

Product over all
outgoing particles

Energy must be positive
momentum must
be conserved

Outgoing particles must be on mass shell

- Complicating looking, but represents a basic statement:
- apart from matrix element, phase space is distributed evenly among all particles subject to mass requirements, E/p conservation
- "dynamics" like parity violation, etc. incorporated into matrix element.

THE SYMMETRY FACTOR:

- Consider the integration of phase space for two particles in the final state where the particles are of the same species.

$$
\int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \frac{d^{4} p_{2}}{(2 \pi)^{4}}
$$

- At some point, say, there will be a configuration where $p_{1}=K_{1}$ and $p_{2}=K_{2}$
- Since the particles are identical, we should also have the reverse case:
- $p_{1}=K_{2}, p_{2}=K_{1}$
- the integral will contain both cases separately.
- However, in quantum mechanics, the identicalness of particles of the same species means that these are the same state and we have double counted.
- We need to add a factor of $1 / 2$ to the phase space
- Likewise, for n identical particles in the final state, we need a factor of $1 / n$!

PHASE SPACE: 2-BODY DECAY

$$
\begin{aligned}
\Gamma= & \frac{S}{2 m_{1}} \times \int|\mathcal{M}|^{2} \times(2 \pi)^{4} \delta^{4}\left(p_{1}^{\mu}-p_{2}^{\mu}-p_{3}^{\mu}\right) \\
& \times(2 \pi) \delta\left(p_{2}^{2}-m_{2}^{2}\right) \Theta\left(p_{2}^{0}\right) \times(2 \pi) \delta\left(p_{3}^{2}-m_{3}^{2}\right) \Theta\left(p_{3}^{0}\right)
\end{aligned}
$$

$$
\frac{d^{4} p_{2}}{(2 \pi)^{4}} \frac{d^{4} p_{3}}{(2 \pi)^{4}}
$$

Let's integrate over overall outgoing particle phase space to get the total decay rate

- Start with the phase space factors: $d^{4} p \equiv d p^{0} d p^{1} d p^{2} d p^{3}$

$$
\begin{aligned}
& \delta\left(p^{2}-m^{2} c^{2}\right)=\delta\left(\left(p^{0}\right)^{2}-\vec{p}^{2}-m^{2} c^{2}\right) \\
& \delta\left(p^{2}-m^{2} c^{2}\right)=\frac{1}{2 p^{0}}\left[\delta\left(p^{0}-\sqrt{\mathbf{p}^{2}+m^{2} c^{2}}\right)+\delta\left(p^{0}+\sqrt{\mathbf{p}^{2}+m^{2} c^{2}}\right)\right]
\end{aligned}
$$

- Ignore the $2 \mathrm{nd} \delta$ function since Θ (po) will be 0 whenever po is negative

$$
\begin{aligned}
& \delta\left(p^{2}-m^{2} c^{2}\right)=\frac{1}{2 p^{0}} \delta\left(p^{0}-\sqrt{\mathbf{p}^{2}+m^{2} c^{2}}\right) \\
& p_{0} \Rightarrow \sqrt{\vec{p}^{2}+m^{2} c^{2}}
\end{aligned}
$$

ENERGY/MOMENTUM CONSERVATION

- Now integrate over p_{3} and p_{2} using the previous relations

$$
\begin{aligned}
\Gamma= & \frac{S}{2 m_{1}} \times \int|\mathcal{M}|^{2} \times(2 \pi)^{4} \delta^{4}\left(p_{1}^{\mu}-p_{2}^{\mu}-p_{3}^{\mu}\right) \\
& \times \frac{(2 \pi) \delta\left(p_{2}^{2}-m_{2}^{2}\right) \Theta\left(p_{2}^{0}\right) \times(2 \pi) \delta\left(p_{3}^{2}-m_{3}^{2}\right) \Theta\left(p_{3}^{0}\right)}{} \\
& \frac{d^{4} p_{2}}{(2 \pi)^{4}} \frac{d^{4} p_{3}}{\left(2 \pi \chi^{4}\right.} \\
& \frac{d^{3} \mathbf{p}_{2}}{(2 \pi)^{3}} \frac{d^{3} \mathbf{p}_{3}}{(2 \pi)^{3}} \frac{1}{2 \times \sqrt{{\overrightarrow{p_{2}}}^{2}+m_{2}^{2} c^{2}}} \frac{\downarrow}{2 \times \sqrt{p_{3}^{2}+m_{3}^{2} c^{2}}}
\end{aligned}
$$

note p_{2} and p_{3} are now set according to E / p conservation by the δ function

$$
\Gamma=\frac{S}{32 \pi^{2} m_{1}} \times \int|\mathcal{M}|^{2} \times \frac{\delta^{4}\left(p_{1}^{\mu}-p_{2}^{\mu}-p_{3}^{\mu}\right)}{\sqrt{\mathbf{p}_{2}^{2}+m_{2}^{2}} \sqrt{\mathbf{p}_{3}^{2}+m_{3}^{2}}} d^{3} \mathbf{p}_{2} d^{3} \mathbf{p}_{3}
$$

DECAY AT REST:

- Decompose the product delta function (particle 1 at rest)

$$
\delta^{4}\left(p_{1}^{\mu}-p_{2}^{\mu}-p_{3}^{\mu}\right)=\delta\left(m_{1}-\sqrt{\mathbf{p}_{2}^{2}+m_{2}^{2}}-\sqrt{\mathbf{p}_{3}^{2}+m_{3}^{2}}\right) \delta^{3}\left(\mathbf{p}_{1}-\mathbf{p}_{2}-\mathbf{p}_{3}\right)
$$

- Perform the $d^{3} p_{3}$ integral

$$
\begin{array}{r}
\Gamma=\frac{S}{32 \pi^{2} m_{1}} \times \int|\mathcal{M}|^{2} \times \frac{\delta^{4}\left(p_{1}^{\mu}-p_{2}^{\mu}-p_{3}^{\mu}\right)}{\sqrt{\mathbf{p}_{2}^{2}+m_{2}^{2}} \sqrt{\mathbf{p}_{3}^{2}+m_{3}^{2}}} d^{3} \mathbf{p}_{2} d \mathbf{p}_{3} \\
\downarrow \\
\sqrt{\mathbf{p}_{2}^{2}+m_{3}^{2}}
\end{array}
$$

$$
\Gamma=\frac{S}{32 \pi^{2} m_{1}} \times \int|\mathcal{M}|^{2} \times \frac{\delta^{4}\left(p_{1}^{\mu}-p_{2}^{\mu}-p_{3}^{\mu}\right)}{\sqrt{\mathbf{p}_{2}^{2}+m_{2}^{2}} \sqrt{\mathbf{p}_{2}^{2}+m_{3}^{2}}} d^{3} \mathbf{p}_{2}
$$

INTEGRAL IN SPHERICAL COORDINATES

$$
\begin{gather*}
d^{3} \mathbf{p}_{2} \Rightarrow d \phi d \cos \theta\left|\mathbf{p}_{2}\right|^{2} d\left|\mathbf{p}_{2}\right| \quad \text { Assume no dependence of } M \text { on } \mathrm{p} \\
\Gamma=\frac{S}{32 \pi^{2} \hbar m_{1}} \times \int d \phi d \cos \theta\left|\mathbf{p}_{2}\right|^{2} d\left|\mathbf{p}_{2}\right||\mathcal{M}|^{2} \times \frac{\delta\left(m_{1} c-\sqrt{\mathbf{p}_{2}^{2}+m_{2}^{2} c^{2}}-\sqrt{\mathbf{p}_{2}^{2}+m_{3}^{2} c^{2}}\right)}{\sqrt{\mathbf{p}_{2}^{2}+m_{2}^{2} c^{2}} \sqrt{\mathbf{p}_{2}^{2}+m_{3}^{2} c^{2}}} \quad \text { Problem 3.10 } \\
\int_{0}^{2 \pi} d \phi \rightarrow 2 \pi \quad \int_{-1}^{+1} d \cos \theta \rightarrow 2 \quad \sqrt{u}=\sqrt{\mathbf{p}_{2}^{2}+m_{2}^{2} c^{2}}+\sqrt{\mathbf{p}_{2}^{2}+m_{3}^{2} c^{2}} \tag{Problem 3.10}\\
\left.d u=\frac{u \mid \mathbf{p}_{2}}{\sqrt{\mathbf{p}_{2}^{2}+m_{2}^{2} c^{2}} \sqrt{\mathbf{p}_{2}^{2}+m_{3}^{2} c^{2}}} d \mathbf{p}_{2} \right\rvert\, \\
\Gamma=\frac{S}{8 \pi m_{1}} \times \int d u|\mathcal{M}|^{2} \times \delta\left(m_{1}-u \frac{\left|\mathbf{p}_{2}\right|}{u}\right.
\end{gather*}
$$

The final integral over u sends $u=m$ and makes p_{2} consistent with E conservation

FINAL RESULT: TWO-BODY DECAY RATE:

$$
\Gamma=\frac{S\left|\mathbf{p}_{2}\right|}{8 \pi m_{1}^{2}}|\mathcal{M}|^{2}
$$

$$
\begin{gathered}
\text { why }\left|\mathbf{p}_{2}\right| \text { and } \\
\text { not }\left|\mathbf{p}_{3}\right| \text { ? }
\end{gathered}
$$

- Now need to calculate the matrix element \mathscr{M}
- We'll use Feynman diagrams and the associated calculus to calculate amplitudes for various elementary processes

SCATTERING

- Phase space expression for scattering of two particles p_{1} and p_{2} are 4-vectors!

$$
\begin{aligned}
\sigma= & \frac{S}{4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-\left(m_{1} m_{2}\right)^{2}}} \times \int|\mathcal{M}|^{2} \times(2 \pi)^{4} \delta^{4}\left(p_{1}^{\mu}+p_{2}^{\mu}-\sum_{f} p_{f}^{\mu}\right) \\
& \times \prod_{j=3}^{N} 2 \pi \delta\left(p_{j}^{2}-m_{j}^{2}\right) \Theta\left(p_{j}^{0}\right) \frac{d^{4} p_{j}}{(2 \pi)^{4}}
\end{aligned}
$$

- It has almost the same form as the decay phase space

$$
\begin{aligned}
\Gamma & =\frac{S}{2 m} \times \int|\mathcal{M}|^{2} \times(2 \pi)^{4} \delta^{4}\left(p_{1}^{\mu}-\sum_{f} p_{f}^{\mu}\right) \\
& \times \prod_{j=2}^{N} 2 \pi \delta\left(p_{j}^{2}-m_{j}^{2}\right) \Theta\left(p_{j}^{0}\right) \frac{d^{4} p_{j}}{(2 \pi)^{4}}
\end{aligned}
$$

LAB-FRAME SCATTERING

- consider $e+p \rightarrow e+p$, initial proton at rest

$$
\begin{aligned}
& \text { Since } m_{e} \ll m_{p} \text {, } \\
& \text { assume } m_{e} \sim 0 \\
& \sigma=\frac{S}{4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-\left(m_{1} m_{2}\right)^{2}}} \times \int|\mathcal{M}|^{2} \times(2 \pi)^{4} \delta^{4}\left(p_{1}^{\mu}+p_{2}^{\mu}-\sum_{f} p_{f}^{\mu}\right) \\
& \times \prod_{j=3}^{N} 2 \pi \delta\left(p_{j}^{2}-m_{j}^{2}\right) \Theta\left(p_{j}^{0}\right) \frac{d^{4} p_{j}}{(2 \pi)^{4}} \\
& \sigma=\frac{S}{4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-\left(m_{1} m_{2}\right)^{2}}} \times \int|\mathcal{M}|^{2} \times(2 \pi)^{4} \delta^{4}\left(p_{1}^{\mu}+p_{2}^{\mu}-\sum_{f} p_{f}^{\mu}\right) \\
& \times \quad \prod_{j=3}^{N} \frac{1}{2 \sqrt{\mathbf{p}_{j}^{2}+m_{j}^{2}}} \frac{d^{3} \mathbf{p}_{j}}{(2 \pi)^{3}}
\end{aligned}
$$

S UMMARY

- Please read 4.1-4.5 for next time

