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L A S T  T I M E :
• We reviewed some basic quantum mechanics 

• hamiltonian, time evolution  

• angular momentum, Pauli matrices 

• Transition rates, Born approximation, golden rule 

• Decay rates 

• Today: 

• phase space 

• decay rate formula 

• (scattering rate) 

• sorry, no pizza



S C AT T E R I N G  R AT E S
• Send in particles on a “target” and study what comes out 

• if particles are “hard spheres”,projectile is infinitesimal 

• Probability of interaction: area of target/unit area:  

• area of target particle = “cross section” σ 

• Rate ∝ rate of incoming particles:  

• Flux 𝜙 = particles/unit area/time ~ ni v

incoming

Target
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M O R E  T H A N  O N E  TA R G E T
• More than one “layer” of target particles 

• More than one target per unit area. 

• Rate ∝ targets in the column swept by the incoming beam 

• Rate = NT/Unit Area  x σ x 𝜙 =  n l σ 𝜙 

• n = number density of target particles, l = length of target 

• Rate/volume = n σ 𝜙

incoming

Targets

l
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C O L L I D I N G  B E A M S :

• In this case, the relative velocity between the two 
particles determines the flux: 

• 𝜙 = na(va+vb)

•  Rate =na (va+vb) nb σ

nA, vA nB, vB



D I F F E R E N T I A L  C R O S S  S E C T I O N
• In hard sphere scattering, something “happening” is binary: 

• If the balls hit each other, then something happened 

• otherwise, nothing happened 

• Generalize: considering “differential cross section.” 

• Probability that particle ends up in a particular part of phase space 

• e.g.. a particular momentum/angle range. 

• Notation lends itself to “integrating” over a phase space variable: 
say we don’t care about the momentum but only the angle:

� � d3�

d� dp
d� = sin �d� d⇥ = d cos � d⇥

d�

d�
=

�
p2dp

d3�

d� dp

“solid angle” azimuthal angle

polar angle
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T O TA L  C R O S S  S E C T I O N
• “total cross section” 

• integrate over all phase space 

• cross section for a particle to end up anywhere 

• For “infinite range” interactions, the total cross section can 
be infinite; i.e. “something” always happens 

• Reflects the fact that no matter how far you are away, there 
is still some electric field that will deflect your particle.

⇥TOT =
�

p2dp d⇤ d cos �
d3⇥

d� dp
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G O L D E N  R U L E
• Fermi’s golden rule states that the probability of a transition in 

quantum mechanics is given by the product of: 

• The absolute value of the matrix element (a k a amplitude) squared  

• The available density of states. 

• Typically a decay of a particle into states with lighter product masses 
has more “phase space” and more likely to occur. 

• Let’s see how to calculate the phase space  

• we’ll learn how to calculate amplitudes later.

P ⇥ |M|2 � �

P � |M|2 P ⇥ 2� |M|2 P �
�
|M(E)|2 �(E) dE



P R O D U C T  O F  P H A S E  S PA C E

• What is net phase space for the particle 1,2,3 to end up in particular places?  

• 0 if energy and momentum are not conserved 

• 0 if particles are not on “mass shell” 

• Otherwise, the product of the individual phase spaces:

Initial State

Particle 1 Particle 2

Particle 3

� = �1(pµ
1 )� �2(pµ

2 )� �3(pµ
3 )

⇥tot =
�

allowed

d4p1

(2�)4
d4p2

(2�)4
d4p3

(2�)4
⇥1(pµ

1 )⇥2(pµ
2 )⇥3(pµ

3 )
integral extends over 
region satisfying 
kinematic constraints

each component of the four-
momentum is independent



P H A S E  S PA C E  I N  D E C AY S

• Complicating looking, but represents a basic statement: 

• apart from matrix element, phase space is distributed evenly among 
all particles subject to mass requirements, E/p conservation 

• “dynamics” like parity violation, etc. incorporated into matrix element.

distributed 
evenly in phase 

space

Energy must be 
positive

Outgoing 
particles must 

be on mass shell

Energy and 
momentum must 

be conserved

Product over all 
outgoing particles

Lorentz Invariant 
Matrix element factor 

(function of kinematics, 
polarizations, etc.)

Symmetry factor

� =
S

2m
⇥

Z
|M|2 ⇥ (2⇡)4�4(pµ1 �

X

f

pµf )⇥
NY

j=f

2⇡ �(p2f �m2
f ) ⇥(p0f )

d4pf
(2⇡)4



T H E  S Y M M E T RY  FA C T O R :
• Consider the integration of phase space for two particles in the final state 

where the particles are of the same species. 

• At some point, say, there will be a configuration where p1 = K1 and p2 = K2 

• Since the particles are identical, we should also have the reverse case: 

• p1= K2, p2 = K1 

• the integral will contain both cases separately. 

• However, in quantum mechanics, the identicalness of particles of the same 
species means that these are the same state and we have double counted. 

• We need to add a factor of 1/2 to the phase space 

• Likewise, for n identical particles in the final state, we need a factor of 1/n!

�
d4p1

(2�)4
d4p2

(2�)4



P H A S E  S PA C E :  2 - B O D Y  D E C AY

• Start with the phase space factors: 

• Ignore the 2nd δ function since Θ(p0) will be 0 whenever p0 is negative

d4p � dp0dp1dp2dp3

�(p2 �m2c2) = �((p0)2 � ⇧p2 �m2c2)

p0 �
�

⌅p 2 + m2c2

Let’s integrate over overall outgoing particle 
phase space to get the total decay rate

�(p2 �m2c2) =
1

2p0

h
�(p0 �

p
p2 +m2c2) + �(p0 +

p
p2 +m2c2)

i

�(p2 �m2c2) =
1

2p0
�(p0 �

p
p2 +m2c2)

� = S
2m1

⇥
R
|M|2 ⇥ (2⇡)4�4(pµ1 � pµ2 � pµ3 )

⇥(2⇡) �(p22 �m2
2) ⇥(p02)⇥ (2⇡) �(p23 �m2

3) ⇥(p03)

d4p2
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ENERGY/MOMENTUM CONSERVATION
• Now integrate over p03 and p02 using the previous relations

1
2�

�
⌅p2

2 + m2
2c

2

1
2�

�
⌅p3

2 + m2
3c

2

note p02 and p03 are now set according 
to E/p conservation by the δ function

� = S
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⇥
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D E C AY  AT  R E S T:
• Decompose the product delta function (particle 1 at rest) 

• Perform the d3p3 integral
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I N T E G R A L  I N  S P H E R I C A L  C O O R D I N AT E S

The final integral over u sends u=m and makes p2 consistent 
with E conservation

� =
S

32⇤2�m1
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Assume no dependence of M on p
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do a change of variables 
to enact the final integral

Problem 3.10

d3p2 ) d� d cos ✓ |p2|2d|p2|
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F I N A L  R E S U LT:  T W O - B O D Y  D E C AY  R AT E :

• Now need to calculate the matrix element ℳ 

• We’ll use Feynman diagrams and the associated calculus 
to calculate amplitudes for various elementary processes 

why |p2| and 
 not |p3|?
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� =
S|p2|
8⇡m2

1

|M|2



S C AT T E R I N G
• Phase space expression for scattering of two particles 

• It has almost the same form as the decay phase space

p1 p2

p3
p4

p5p6

p1 and p2 are 
4-vectors!
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L A B - F R A M E  S C AT T E R I N G
• consider e + p → e + p, initial proton at rest

p1
p2

p3

p4

Since me ≪ mp, 
assume me ~ 0
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S U M M A RY
• Please read 4.1-4.5 for next time


