H. A. TANAKA: PHY 489/1489

LECTURE 4:
PHASE SPACE IN DECAYS



LAST TIME:

* We reviewed some basic quantum mechanics
e hamiltonian, time evolution
* angular momentum, Pauli matrices
e Transition rates, Born approximation, golden rule
* Decay rates
e Today:
* phase space
e decay rate formula
* (scattering rate)
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SCATTERING RATES

e Send in particles on a “target” and study what comes out

 if particles are "hard spheres”,projectile is infinitesimal

: g ¢
incoming

Target

* Probability of interaction: area of target/unit area:
e area of target particle = “cross section” o
* Rate « rate of incoming particles:

o Flux ¢ = particles/unit area/time ~ n; v
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MORE THAN ONE TARGET

* More than one "layer” of target particles

 More than one target per unit area.

¢ ¢ o

¢

incoming

e Rate « targets in the column swept by the incoming beam

e Rate = Nt/UnitArea xoX¢= nlog

* n = number density of target particles, | = length of target

e Rate/volume=no ¢



COLLIDING BEAMS:
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* In this case, the relative velocity between the two
oarticles determines the flux:

° ¢ = Na(VatVvp)

e Rate =n, (vo+Vvp) Ny O



DIFFERENTIAL CROSS SECTION

* |n hard sphere scattering, something “happening” is binary:

* |t the balls hit each other, then something happened

e otherwise, nothing happened

* Generalize: considering “difterential cross section.”

* Probability that particle ends up in a particular part of phase space

* e.g.. a particular momentum/angle range.

dBo polar angle
aide d{) = sin 0df) d¢ = dcos b do¢
p “solid angle” azimuthal angle

* Notation lends itself to “integrating” over a phase space variable:
say we don't care about the momentum but only the angle:

d_a_/Qd d°o
aQ | P Paqdp
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TOTAL CROSS SECTION

e "total cross section”

* integrate over all phase space

d3
oTOT = /pzdp dé d cos f—

dS2 dp

» cross section for a particle to end up anywhere

e For "infinite range” interactions, the total cross section can
be infinite; i.e. “something” always happens

* Reftlects the tact that no matter how far you are away, there
is still some electric field that will detlect your particle.



GOLDEN RULE

* Fermi’s golden rule states that the probability of a transition in
quantum mechanics is given by the product of:

* The absolute value of the matrix element (a k a amplitude) squared

* The available density of states. P |M‘2 X p
P o |[M|? P o2 x |M|? Po</|/\/l 2 (B

* Typically a decay of a particle into states with lighter product masses
nas more “phase space” and more likely to occur.

* Let's see how to calculate the phase space

e we'll learn how to calculate amplitudes later.



PRODUCT OF PHASE SPACE

Initial State

-~ \\

Parncle 1

Particle 2

* What is net phase space for the particle 1,2,3 to end up in particular places?
* 0Oif energy and momentum are not conserved

e Qif particles are not on “mass shell”

e Otherwise, the product of the individual phase spaces:

0= pq (p'ib) X 09 (pg) X p3 (pg) each component of the four-
momentum is independent
integral extends over d*p, dips dips
' tistyi :00_/ P1\P71)P2\P3 )P3\P
region satisfying tot e (2m)E (20) (2 (p1)p2(ph)p3(p5)

kinematic constraints



PHASE SPACE IN DECAYS

Product over all

outgoing particles

Symmetry factor Energy must be

l l poIitive

I' = % X /‘_/\/1‘2 X (2#)454(19/1‘ _ Zp/;) X H 27 (5(}9? — m?c) @(p?c) (27‘-){1

T f i=f I
Lorentz Invariant EnerLy and distributed

Matrix element factor evenly in phase

momentum must Outaoin
(function of kinematics, geing space

be conserved particles must

polarizations, etc.)
be on mass shell

e Complicating looking, but represents a basic statement:

e apart from matrix element, phase space is distributed evenly among
all particles subject to mass requirements, E/p conservation

* “dynamics” like parity violation, etc. incorporated into matrix element.



THE SYMMETRY FACTOR:

e Consider the integration of phase space for two particles in the final state
where the particles are of the same species.

/ d4p1 d4p2
(2m)* (2m)*

* At some point, say, there will be a configuration where p; = K; and p2 = K

e Since the particles are identical, we should also have the reverse case:
* p1= Ky, p2 =Ky
e the integral will contain both cases separately.

* However, in quantum mechanics, the identicalness of particles of the same
species means that these are the same state and we have double counted.

* We need to add a factor of 1/2 to the phase space

e Likewise, for n identical particles in the final state, we need a factor of 1/n!



PHASE SPACE: 2-BODY DECAY
Io= 5o x [IM]2 x (2m)*6% (pY — ph — p5)

x(2m) 6(p3 —m3) O(py) x (2m) d(p3 — m3) O(p3)

d*ps d*ps Let’s integrate over overall outgoing particle
(2m)4 (2m)4 phase space to get the total decay rate

d*p = dp’dp*dp?dp?

e Start with the phase space factors:

3(p* —m?c®) = o((p")* — p* —m*c?)

1
20

5(p® — m?c?) = { p° — /p? + m2c2) + 6(p° + \/p2+m202)}

* Ignore the 2nd ® function since BO(po) will be O whenever po is negative
1
2p0

6(p* —m*c?) = ==6(p" — V/p? + mc?)

po = V77 + w2



ENERGY/MOMENTUM CONSERVATION

* Now integrate over pY3and pY using the previous relations

I = 52 x [IM]? x (2m)** (p} — py — p)
x (2m) 6(p3 —m3) O©(p3) x (2m) d(p3 — m3) O(p3)
Kpa a&ps
(2R (2™ | |
d’ps  d°p3 1 1
(2m)* (2m)° 2 X \/p_é 2 + m3sc? 2 X \/p_é 2 + mic?

note pY% and pf; are now set according
to E/p conservation by the 0 function

g 54 AN L o
T — . ></|./\/l|2 (pl Po pS)
2T VP35 +m3\/p3 +m3

d’ 2d3P3



DECAY AT REST:

e Decompose the product delta function (particle 1 at rest)
(Pl —ph —p5) =9 <m1 — \/p% +mj — \/p§ +m§> 0°(p1 — P2 — P3)

* Perform the d3p3zintegral
IS 54 N AN &/
I — - X/‘M‘Q < 2(p1 2p2 2p3) dePQQQ\I{S
32T VP35 +m3/p3 +m3

)
\/p%+m§

o (p — ph — pb)

|
[ = x [ |M]? x d°p
satmy < M T /el +




INTEGRAL IN SPHERICAL COORDINATES

d°p, = do dcos b |ps|?d|p-]

Assume no dependence of M on p

S 5 _ 2 2.2 _ 2 2.2
Do i [ g deost Ipaf? dipgllag? x 2T VPE T IEC - VRS E )
3212 hmy \/pg + mic? \/p% + m%@
27 +1
/ dp — 27 / dcos — 2 Problem 3.10
0 —1
u = \/p3+mic?+\/p3 +m3c?
d — u|p2| d
) VP3+tmic?y/p3+m3e? P2
S
I' = ></ du| M |? ><5(m1—u)M
KTImy U

The final integral over u sends u=m and makes p2 consistent
with E conservation



FINAL RESULT: TWO-BODY DECAY RATE:

- 8mm? why [p2| and

Not ‘p;;"?

* Now need to calculate the matrix element 4

 We'll use Feynman diagrams and the associated calculus
to calculate amplitudes for various elementary processes



SCATTERING

* Phase space expression for scattering of two particles
P4

o1 and py are Zp3
4-vectors! P1 \ P2

)

\ 5 B~

S 2 2454 (pH wo L
4\)‘(p1°p2)2—(m1m2)2 X f‘M‘ X ( 7T) (pl _I_pQ prf)

N d*p;
X Hj:S 2T 5(29? — m?) @(pg) (275)4
* |t has almost the same tform as the decay phase space

o= 50 x JIMPPx @2m)t (p) — 32, pf)

N d*p;
x T, 27 6(p? — m2) O(p)) (524



LAB-FRAME SCATTERING

* considere + p = e + p, initial proton at rest

3 .
o D) = Since me € my,
- @ assume me ~ 0
P4

_ S > AgA( B "
o = 4/ (p1-p2)%—(mimsz)? 8 f‘M‘ < (2m)70%(py + 1 prf)

N d*p;
X Hj:g 2T 5(]7? — m?) @(pg) ﬁ

o 5 < [IM? x (2m)*0*(p) +ph — >, p




SUMMARY

o Please read 4.1-4.5 for next time



