PHYSICS 489/149

LECTURE 3: REVIEW OF QUANTUM MECHANICS

OFFICE HOURS:

- According to the doodle poll:
- Everyone can make it to either:
- Tuesday at 1500 (after class)
- Friday at 1400
- Office hours will (usually) be held at this time

LAST TIME:

- We reviewed special relativity
- we will mainly be interested in particle kinematics
- energy, momentum, mass
- importance of invariant quantities
- pay attention to 3 - vs. 4-vectors!
- Today, we move to quantum mechanics
- review basic concepts in quantum dynamics
- currents
- spin and angular momentum
- time dependent perturbation theory and scattering
- some discussion of decay and scattering rates

BASIC QUANTUM MECHANICS

- The Schrödinger Equation:

$$
\hat{H} \psi=i \dot{\psi} \quad \hat{p}=-i \nabla
$$

- for non-relativistic quantum mechanics

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\hat{V}(x) \quad\left[-\frac{1}{2 m} \nabla^{2}+\hat{V}\right] \psi=i \dot{\psi}
$$

$$
\begin{aligned}
& \text { - Consider } \\
& |\psi|^{2}=\psi^{*} \psi \\
& \psi^{*} \rightarrow-\frac{1}{2 m} \nabla^{2} \psi=i \dot{\psi} \leftarrow \psi^{*} \quad \psi \rightarrow-\frac{1}{2 m} \nabla^{2} \psi^{*}=-i \dot{\psi}^{*} \quad \leftarrow \psi \\
& -\frac{1}{2 m}\left[\psi^{*} \nabla^{2} \psi-\psi \nabla^{2} \psi^{*}\right]=i\left(\psi^{*} \dot{\psi}+\psi \dot{\psi}^{*}\right) \\
& -\frac{1}{2 m} \nabla \cdot\left[\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right]=i \frac{\partial}{\partial t}\left[\psi^{*} \psi\right]
\end{aligned}
$$

CONSERVED CURRENT

- conserved current:

$$
\nabla \cdot \mathbf{j}+\dot{\rho}=\mathbf{0}
$$

- Consider the previous equations:

$$
-\frac{1}{2 m} \nabla \cdot\left[\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right]=i \frac{\partial}{\partial t}\left[\psi^{*} \psi\right]
$$

- we can consider this a conserved current with

$$
\rho=|\psi|^{2} \quad \mathbf{j}=-i \frac{1}{2 m}\left[\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right]
$$

- corresponding to the conserved flow of particle (density)

COMMUTATORS:

- $[\mathrm{A}, \mathrm{B}]=\mathrm{AB}-\mathrm{BA}$
- Convince yourself:
- $[A B, C]=A[B, C]+[A, C] B$
- $[A, B C]=[A, B] C+B[A, C]$
- Consequences for operators that commute?
- Canonical commutation relation
- $[\mathrm{x}, \mathrm{p}]=\mathrm{i}$
- If we label $(x, y, z) \rightarrow\left(r_{1}, r_{2}, r_{3}\right),\left(p_{x}, p_{y}, p_{z}\right) \rightarrow\left(p_{1}, p_{2}, p_{3}\right)$
- $\left[r_{a}, \mathrm{P}_{\mathrm{b}}\right]=\mathrm{i} \delta_{\mathrm{ab}}$
the "Kronecker delta"

ANGULAR MOMENTUM

- From classical mechanics:
- $\mathbf{L}=\mathbf{r} \times \mathbf{p}$
- $L_{x}=y p_{z}-z p_{y} \ldots .$.
- $L_{i}=\varepsilon_{i j k} r_{j} p_{k}$

$$
\varepsilon_{\mathrm{abc}} \varepsilon_{\mathrm{abd}}=2 \delta_{\mathrm{cd}}
$$

- $\varepsilon_{\mathrm{ijk}}=0$ if any of ijk are equal
- $\varepsilon_{\mathrm{ijk}}=+1$ if ijk is an even permutation of 123
- $\varepsilon_{\mathrm{ijk}}=-1$ if ijk is an odd permutation of 123
- From the canonical commutation relations:
- $\left[L_{i}, L_{j}\right]=i \varepsilon_{i j k} L_{k}$
- $\left[L_{x}, L_{y}\right]=i L_{z} \ldots$.
- what consequences does this have for simultaneous eigenstates?
- Usually, we choose to diagonalize in L_{z}

TOTAL ANGULAR MOMENTUM

- We can consider the magnitude of the angular momentum
- $L^{2}=L_{x}{ }^{2}+L_{y}{ }^{2}+L_{z}{ }^{2}$
- $\left[L^{2}, L_{x}\right]=0$
- "Ladder operator": $L_{ \pm}=L_{x} \pm i L_{y}$
- $\left[\mathrm{L}_{2}, \mathrm{~L}_{ \pm}\right]= \pm \mathrm{L}_{ \pm}$
- $L^{2}=L_{-} L_{+}+L_{z}+L_{z}{ }^{2}$
- Consider an eigenstates $\|, \mathrm{m}\rangle$
- I eigenvalue of L^{2}, m eigenvalue of L_{2}
- $\left.\left.L_{z} L_{ \pm} \|, m\right\rangle=(m \pm 1) L_{ \pm} \|, m\right\rangle$
- $\left.L^{2} \|, m\right\rangle=|(\mid+1) \|, m\rangle$
- Representations of angular momentum
- we can have states of total orbital angular momentum in integers
- also half-integer states corresponding to spin (more on this later)
- 2|+1 states corresponding for angular momentum I states.

THE PAULI MATRICES

- Define the matrices:

$$
S_{x}=\frac{\hbar}{2} \sigma_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), S_{y}=\frac{\hbar}{2} \sigma_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), S_{z}=\frac{\hbar}{2} \sigma_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Convince yourself that:
- they satisfy the commutation relations $\left[\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}\right]=\mathrm{i} \varepsilon_{\mathrm{ijk}} \mathrm{S}_{\mathrm{k}}$
- the vectors $\binom{1}{0},\binom{0}{1}$ are the eigenvectors of S_{z} with the appropriate eigenvalues
- operators S_{+}and S_{-}have the desired properties.
- all states of this system have the appropriate eigenvalue for a spin $1 / 2$ system for the operator S^{2}.

TIME-DEPENDENT PERTURBATION

- "weakly" interacting system
- most energy in free motion with small potential energy/interaction
- $\mathrm{H}=\mathrm{H}_{0}+\mathrm{V}$ (where V
- Assume we know eigenstates of H_{0}

$$
\begin{aligned}
& H_{0}\left|\phi_{j}\right\rangle=E_{j}\left|\phi_{j}\right\rangle \quad\left\langle\phi_{j} \mid \phi_{k}\right\rangle=\delta_{j k} \quad|\psi(x, t)\rangle=\sum_{k} c_{k}(t) e^{-i E_{k} t}\left|\phi_{k}\right\rangle \\
& -\quad \text { Employing Schrödinger's equation: }
\end{aligned}
$$

$$
\begin{gathered}
H|\psi\rangle=i \frac{d}{d t}|\psi\rangle \\
\sum_{j}\left[E_{j}+V\right] e^{-i E_{j} t} c_{j}\left|\phi_{j}\right\rangle \\
\left.\sum_{j} V e^{-i E_{j} t} c_{j}\left|\dot{c}_{j}\right\rangle=i E_{k} c_{k}\right] e^{-i E_{k} t}\left|\phi_{k}\right\rangle \\
\sum_{j} \dot{c}_{k} e^{-i E_{k} t}\left|\phi_{k}\right\rangle
\end{gathered}
$$

FIRST ORDER:

- Now assume that we start in a specific state
- $c_{i}(0)=1, c_{j \neq i}(0)=0$
- $\mathrm{V} \ll \mathrm{H}_{0}$ so that $\mathrm{c}_{\mathrm{i}}(\mathrm{t}) \sim 1 \gg \mathrm{c}_{\mathrm{j} \neq i}(\mathrm{t})$ for all t

$$
\begin{aligned}
& \sum_{j} V e^{-i E_{j} t} c_{k}\left|\phi_{j}\right\rangle=i \sum_{k} \dot{c}_{k} e^{-i E_{k} t}\left|\phi_{k}\right\rangle \\
&\left\langle\phi_{f}\right| \rightarrow V e^{-i E_{i} t}\left|\phi_{i}\right\rangle \sim\left\langle\phi_{f}\right| \rightarrow i \sum_{k} \dot{c}_{k} e^{-i E_{k} t}\left|\phi_{k}\right\rangle \\
& \dot{c}_{f}=-i\left\langle\phi_{f}\right| V\left|\phi_{i}\right\rangle e^{i\left(E_{f}-E_{i}\right) t}
\end{aligned}
$$

- integrate in time to get the transition amplitude from $i \rightarrow f$

$$
\begin{gathered}
c_{f}(T)=-i \int_{0}^{T} d t\left\langle\phi_{f}\right| V\left|\phi_{i}\right\rangle e^{i\left(E_{f}-E_{i}\right) t} \\
\Gamma_{f i}=\frac{P_{f i}}{T}=\frac{1}{T} c_{f}^{*}(T) c_{f}(T)=\left\lvert\,\left\langle\phi_{f}\right| V\left|\phi_{i}\right\rangle^{2} \frac{1}{T} \int_{0}^{T} d t \int_{0}^{T} d t^{\prime} e^{i\left(E_{f}-E_{i}\right) t} e^{-i\left(E_{f}-E_{i}\right) t^{\prime}}\right.
\end{gathered}
$$

FERMI'S GOLDEN RULE

- We employ the "delta function":

$$
\begin{aligned}
& \int d x e^{i\left(k-k^{\prime}\right) x}=2 \pi \times \delta\left(k-k^{\prime}\right) \\
& \downarrow \\
& \Gamma_{f i}\left.=\left|\left\langle\phi_{f}\right| V\right| \phi_{i}\right\rangle\left.\right|^{2} \frac{1}{T} \int d t \int d t^{\prime} e^{i\left(E_{f}-E_{i}\right) t} e^{-i\left(E_{f}-E_{i}\right) t^{\prime}} \\
&\left.=2 \pi\left|\left\langle\phi_{f}\right| V\right| \phi_{i}\right\rangle\left.\right|^{2} \frac{1}{T} \int d t e^{i\left(E_{f}-E_{i}\right) t} \delta\left(E_{f}-E_{i}\right)
\end{aligned}
$$

- δ function enforces energy conservation
- integrate over energy, with $\rho\left(E_{f}\right)=$ number of states at E_{f}

$$
\begin{aligned}
& \left.=2 \pi \int d E_{f} \rho\left(E_{f}\right)\left|\left\langle\phi_{f}\right| V\right| \phi_{i}\right\rangle\left.\right|^{2} \frac{1}{T} \int d t e^{i\left(E_{f}-E_{i}\right) t} \delta\left(E_{f}-E_{i}\right) \\
& \left.\equiv 2 \pi\left|\left\langle\phi_{f}\right| V\right| \phi_{i}\right\rangle\left.\right|^{2} \rho\left(E_{i}\right)
\end{aligned}
$$

GOLDEN RULE:

- Fermi's golden rule states that the probability of a transition in quantum mechanics is given by the product of:
- The absolute value of the matrix element (a k a amplitude) squared
- The available density of states.

$$
P \propto|\mathcal{M}|^{2} \times \rho
$$

$$
P \propto \int|\mathcal{M}(E)|^{2} \rho(E) d E
$$

- Typically a decay of a particle into states with lighter product masses has more "phase space" and more likely to occur.

DO IT AGAIN

- We can use our new approximation to improve the original result

$$
\begin{aligned}
& c_{f}(T)=-i \int_{0}^{T} d t\left\langle\phi_{f}\right| V\left|\phi_{i}\right\rangle e^{i\left(E_{f}-E_{i}\right) t} \\
& \downarrow \\
& \sum_{j} V e^{-i E_{j} t} c_{k}\left|\phi_{j}\right\rangle=i \sum_{k} \dot{c}_{k} e^{-i E_{k} t}\left|\phi_{k}\right\rangle \\
& T_{f i}=\left\langle\phi_{f}\right| V\left|\phi_{i}\right\rangle+\sum_{j \neq i} \frac{\left\langle\phi_{f}\right| V\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| V\left|\phi_{i}\right\rangle}{E_{i}-E_{k}}
\end{aligned}
$$

PARTICLE DECAYS

- A particle of a given type is identical to all others of its type
- some probability to decay within an infinitesimal time period dt
- Γ is independent of how "old" the particle is.
- For an ensemble of particles, the total rate of change is:

$$
d N=-\Gamma N d t \quad \Rightarrow \quad N(t)=N_{0} e^{-\Gamma t}
$$

- The number of surviving particles follows:
- wait for half of the particles to disappear: "half life"

$$
\frac{N(t)}{N_{0}}=\frac{1}{2}=e^{-\Gamma t} \quad \Rightarrow \quad t_{1 / 2}=\frac{\log 2}{\Gamma} \quad N_{0} \equiv N(0)
$$

- wait for the number to decrease by a factor of e: "lifetime"

$$
\frac{N(t)}{N_{0}}=\frac{1}{e}=e^{-\Gamma t} \quad \Rightarrow \quad \tau=\frac{1}{\Gamma}
$$

COMBINING DECAY RATES:

- If there are several decay "modes" each with a given rate Γ_{i}, the total decay rate is given by the sum of all the rates:

$$
\Gamma_{t o t}=\sum_{i} \Gamma_{i} \Rightarrow \tau=\frac{1}{\Gamma_{t o t}}
$$

- If you are observing only one of these decay modes as a function of time, you will still see the number of particles diminish as the total decay rate

$$
e^{-\Gamma_{t o t} t}=e^{-t / \tau}
$$

even though the rate of decay per unit time is a fraction of the total decay rate

- You are observing a fraction of the total decays which means that the distribution will diminish as that fraction times the overall exponential.

SCATTERING RATES

- Send in particles on a "target" and study what comes out
- if particles are "hard spheres", projectile is infinitesimal

- Probability of interaction: area of target/unit area:
- area of target particle = "cross section" σ
- Rate \propto rate of incoming particles:
- Luminosity $\mathfrak{L}=$ particles/unit area/time

MORE THAN ONE TARGET

- More than one "layer" of target particles
- More than one target per unit area.

- Rate \propto targets in the column swept by the incoming beam
- Rate $=N_{T} /$ Unit Area $\times \sigma \times \mathcal{L}=n \mid \sigma \mathcal{L}$
- $n=$ number density of target particles, $I=$ length of target

DIFFERENTIAL CROSS SECTION

- In hard sphere scattering, something "happening" is binary:
- If the balls hit each other, then something happened
- otherwise, nothing happened
- We generalize the idea of "something happening" by considering "differential cross section."
- Probability that particle ends up in a particular part of phase space
- e.g.. a particular momentum/angle range.

$$
\sigma \Rightarrow \frac{d^{3} \sigma}{d \Omega d p} \quad \begin{aligned}
& d \Omega=\sin \theta d \theta d \phi=d \cos \theta d \phi \\
& \text { "solid angle" }
\end{aligned}
$$

- Notation lends itself to "integrating" over a phase space variable: say we don't care about the momentum but only the angle:

$$
\frac{d \sigma}{d \Omega}=\int p^{2} d p \frac{d^{3} \sigma}{d \Omega d p}
$$

TOTAL CROSS SECTION

- "total cross section"
- integrate over all phase space

$$
\sigma_{T O T}=\int p^{2} d p d \phi d \cos \theta \frac{d^{3} \sigma}{d \Omega d p}
$$

- cross section for a particle to end up anywhere
- Note for "infinite range" interactions like the Coulomb interaction, the total cross section can be infinite; i.e.
"something" always happens
- This just reflects the fact that no matter how far you are away, there is still some electric field that will deflect your particle.

SUMMARY:

- We reviewed basics of Quantum Mechanics
- Schrödinger's Equation
- Commutation relations
- Angular Momentum
- Fermi's Golden Rule rate of a process breaks down into
- an amplitude
- phase space/density of states factor
- Introduced basic concepts of rate in:
- particle decays: decay rate and lifetimes
- scattering: (differential cross sections)
- A few new mathematical objects:
- Kronecker and Dirac δ
- $\varepsilon_{i j k}$
- Pauli matrices

NEXT TIME

- Please read Chapter 3

THE PAULI MATRICES

- Define the matrices corresponding to our S_{i} operators

$$
S_{x}=\frac{\hbar}{2} \sigma_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), S_{y}=\frac{\hbar}{2} \sigma_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), S_{z}=\frac{\hbar}{2} \sigma_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- eigenvectors corresponding to eigenstates of $\mathrm{S}, \mathrm{S}_{z}$.

$$
\left|\frac{1}{2}, \frac{1}{2}\right\rangle \rightarrow\binom{1}{0} \quad\left|\frac{1}{2},-\frac{1}{2}\right\rangle \rightarrow\binom{0}{1}
$$

Dirac notation

$$
S_{z}\left|\frac{1}{2}, \frac{1}{2}\right\rangle=\frac{\hbar}{2}\left|\frac{1}{2}, \frac{1}{2}\right\rangle
$$

$$
S_{z}\left|\frac{1}{2},-\frac{1}{2}\right\rangle=-\frac{\hbar}{2}\left|\frac{1}{2},-\frac{1}{2}\right\rangle
$$

Pauli matrix notation
$\frac{\hbar}{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{1}{0}=\frac{\hbar}{2}\binom{1}{0}$
$\frac{\hbar}{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{0}{1}=-\frac{\hbar}{2}\binom{0}{1}$

MORE ON PAULI MATRICES:

- Symbolic vs. Matrix form

$$
\begin{aligned}
& S_{+}\left|\frac{1}{2}, \frac{1}{2}\right\rangle=0 \\
& S_{+}\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\hbar \sqrt{\frac{1}{2} \frac{3}{2}-\frac{1}{2}-\frac{1}{2}}\left|\frac{1}{2}, \frac{1}{2}\right\rangle=\hbar\left|\frac{1}{2}, \frac{1}{2}\right\rangle
\end{aligned}
$$

$S_{-}\left|\frac{1}{2}, \frac{1}{2}\right\rangle=\hbar \sqrt{\frac{1}{2} \frac{3}{2}-\frac{-1}{2}} \frac{1}{2}\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\hbar\left|\frac{1}{2},-\frac{1}{2}\right\rangle$
$S_{-}\left|\frac{1}{2},-\frac{1}{2}\right\rangle=0$

$$
\begin{aligned}
& S_{+}=S_{x}+i S_{y}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right) \\
& \frac{\hbar}{2}\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)\binom{1}{0}=0 \\
& \frac{\hbar}{2}\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)\binom{0}{1}=\hbar\binom{1}{0} \\
& S_{-}=S_{x}-i S_{y}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right) \\
& \frac{\hbar}{2}\left(\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right)\binom{1}{0}=\hbar\binom{0}{1} \\
& \frac{\hbar}{2}\left(\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right)\binom{0}{1}=0
\end{aligned}
$$

TOTAL ANGULAR MOMENTUM

$$
\begin{aligned}
& S^{2}\left|\frac{1}{2}, \frac{1}{2}\right\rangle=l(l+1) \hbar^{2}\left|\frac{1}{2}, \frac{1}{2}\right\rangle=\frac{3}{4} \hbar^{2}\left|\frac{1}{2}, \frac{1}{2}\right\rangle \\
& S^{2}\left|\frac{1}{2},-\frac{1}{2}\right\rangle=l(l+1) \hbar^{2}\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\frac{3}{4} \hbar^{2}\left|\frac{1}{2},-\frac{1}{2}\right\rangle
\end{aligned}
$$

$$
\left.\begin{array}{rl}
S^{2}=S_{x}^{2}+S_{y}^{2}+S_{z}^{2}= & \frac{\hbar^{2}}{4} \times
\end{array}\left[\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)^{2}+\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)^{2}+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)^{2}\right]\right] .
$$

