PHYSICS 489/149

LECTURE 3: REVIEW OF
QUANTUM MECHANICS



OFFICE HOURS:

e According to the doodle poll:

e Everyone can make it to either:

e Tuesday at 1500 (after class)
* Friday at 1400

e Office hours will (usually) be held at this time



LAST TIME:

* We reviewed special relativity

e we will mainly be interested in particle kinematics

°* energy, momentum, mass
importance of invariant quantities

pay attention to 3- vs. 4-vectors!

e Today, we move to quantum mechanics

review basic concepts in quantum dynamics
currents

spin and angular momentum

time dependent perturbation theory and scattering

some discussion of decay and scattering rates



BASIC QUANTUM MECHANICS
e The Schrodinger Equation:

Hy = it p=—iV

e for non-relativistic quantum mechanics
/\2 -
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CONSERVED CURRENT

* conserved current:

V-j+p=0

* Consider the previous equations:

1
2m

0
V[0V - V] =i [0

* we can consider this a conserved current with

p= [0l §=—ip [0V — VY

e corresponding to the conserved flow of particle (density)




COMMUTATORS:
* [A, B] = AB-BA

e Convince yourselt:
 [AB,C] = A[B,C] +[A,C]B
 [A,BC]=[A,B]C + B[A,C]

* Consequences for operators that commute?
e Canonical commutation relation
* [xpl=i
* Itwe label (x,y, 2) = (r1, r2,3), (Px Py, P2) = (P1, P2, P3)
* [ra, pbl =i 0ab

the "Kronecker delta”
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ANGULAR MOMENTUM

e From classical mechanics:

e L=rxp
° Li=yp;-zpy ......
° LI_ IJ|< i Pk

Eabc €abd = 26cd
gix = 0 if any of ijk are equal

* gy =+1ifijkis an even permutation of 123
* g =-1ifijkis an odd permutation of 123
* From the canonical commutation relations:
* [L L] =1 & Lk
o [LoLJ=iL,.....

* what consequences does this have for simultaneous eigenstates?

e Usually, we choose to diagonalize in L,

/



TOTAL ANGULAR MOMENTUM

* We can consider the magnitude of the angular momentum
o LP=LHL
« [, L1=0
* “Ladder operator”: L, =L, = iL,
° L, Li==L.
e L°=LL, +L+L°

* Consider an eigenstates |I,m)

* |eigenvalue of L% m eigenvalue of L,
o L L,|l,m)=(m=1)L.
o L°|Lm)=I(1+1)

* Representations of angular momentum

,m)

,m)

* we can have states of total orbital angular momentum in integers
 also half-integer states corresponding to spin (more on this later)

o 2|+1 states corresponding for angular momentum | states.
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THE PAULI MATRICES

e Define the matrices:

e Convince yourself that:

* they satisty the commutation relations [S;, Si] = i & Sk

e the vectors (é) , (Cf) are the eigenvectors of S, with the
appropriate eigenvalues

e operators S; and S_have the desired properties.
 all states of this system have the appropriate eigenvalue

for a spin 1/2 system for the operator 5%
Problem 2.16



TIME-DEPENDENT PERTURBATION

e "weakly” interacting system

* most energy in free motion with small potential energy/interaction
e H=Hy+V(whereV

e Assume we know eigenstates of Hg

Hol|pj) = Ej|oj) (Djldn) = i |(x,8)) =) cr(t)e P gp)
* Employing Schrodinger’s equation: k
d
Hlyp) = i@\?@
Y [E; 4+ Ve Fite|¢;) iy [ér — iExcr] e PR )
J k
D Ve 'Fitejlo;) =i ) ine P gy)
J J
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FIRST ORDER:

 Now assume that we start in a specific state
* ¢(0) =1, Cj;ti(O) =0
* V « Hpso that ¢i(t) ~1» c(t) for all t

Zve—zE 1 ‘qu _ Zzéke—iEkt’¢k>

k

VR P I i P

k
= {0V |y} (P

e integrate in time to get the transition amplitude from i—f

T .
cg(T) = —i /O dt (¢f|V|p;)e' Fr—Eit

(Pr| — V@

Pr 1, 21 [t .y i(Ef—E)t —i(E;—E;)t’
= —c;(T)cp(T) = [op|VIoi)|"= | dt [ di" e/ 7te B
T T 1T Jg 0

Ty =
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FERMI'S GOLDEN RULE

* We employ the "delta function”;
/ dr "FF)T = o x §(k — k')

(s |V |di)|? / dt / A’ e Er—Ei)t —i(Ef—E;)t’

1 o
—2r(¢yIVIg0) P, [ dt /B BS(Ey ~ E)

* 0 function enforces energy conservation

* integrate over energy, with p(Es) = number of states at Es
1 |
—2n [ By o(Bp)liosIVIsaP . [ dt e Fr B (s - By

= 27|(¢ |V |s) |2 p(E;)
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GOLDEN RULE:

* Fermi's golden rule states that the probability of a transition in
quantum mechanics is given by the product of:

* The absolute value of the matrix element (a k a amplitude) squared

* The available density of states.

P o |[M|*xp

Vi

P o |[M|? P ox 2 x |M|?

Po</|M(E)\2p(E) dE

* Typically a decay of a particle into states with lighter product

masses has more “phase space” and more likely to occur.
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DO IT AGAIN

* \We can use our new approximation to improve the

original result T
e (T) = =i [t (@5[V]gi)eiFr "
0

l
Z Ve *Hitey|g;) =i Z cre” " o)
J

k

O |V0oj)(d51V i)

Tys = (64lVIgn) + 3 2l
j#i Z

14



PARTICLE DECAYS

* A particle of a given type is identical to all others of its type
* some probability to decay within an infinitesimal time period dt

e I'isindependent of how “old” the particle is.

e For an ensemble of particles, the total rate of change is:

dN = -I' Ndt = N(t)= Nge '*
* The number of surviving particles follows:

e wait for half of the particles to disappear: “half lite”

N(t 1 log 2 No = N(0
():_:e—rt =ty = 08 0 (0)
Nj 2 I

* wait for the number to decrease by a tactor of e: “lifetime”




COMBINING DECAY RATES:

* |f there are several decay “modes” each with a given rate I, the total decay
rate is given by the sum of all the rates:

1
L'tor = Z I'sv = 7= T
) tot

* |f you are observing only one of these decay modes as a function of time, you
will still see the number of particles diminish as the total decay rate

_Ftott —t/T

€ — €

even though the rate of decay per unit time is a fraction of the total decay rate

* You are observing a fraction of the total decays which means that the
distribution will diminish as that fraction times the overall exponential.
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SCATTERING RATES

e Send in particles on a “target” and study what comes out

 if particles are "hard spheres”,projectile is infinitesimal

: g ¢
incoming

Target

* Probability of interaction: area of target/unit area:
e area of target particle = “cross section” o

* Rate « rate of incoming particles:

° Luminosity £ = particles/unit area/time
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MORE THAN ONE TARGET

* More than one "layer” of target particles

 More than one target per unit area.

C ¢ o

¢

incoming

* Rate « targets in the column swept by the incoming beam

e Rate = Nt/UnitArea xoX L= nlo L

°* n = number density of target particles, | = length of target
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DIFFERENTIAL CROSS SECTION

e In hard sphere scattering, something "happening” is binary:
* |f the balls hit each other, then something happened

e otherwise, nothing happened

* \We generalize the idea of “something happening” by
considering "differential cross section.”

* Probability that particle ends up in a particular part of phase space

e e.g.. a particular momentum/angle range.

e polar angle
0:>de dS) = sin0df dp = dcos b do
p “solid angle” azimuthal angle

* Notation lends itself to “integrating” over a phase space variable:
say we don't care about the momentum but only the angle:

d_a_/Qd d°o
aQ | P Paqdp
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TOTAL CROSS SECTION

e "total cross section”

* integrate over all phase space

d3
oTOT = /pzdp dé d cos f—

dS2 dp

» cross section for a particle to end up anywhere

* Note for “infinite range” interactions like the Coulomb
interaction, the total cross section can be infinite: i.e.
"something” always happens

e This just reflects the fact that no matter how far you are
away, there is still some electric field that will deflect your
particle.
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SUMMARY:

* We reviewed basics of Quantum Mechanics
e Schrodinger’s Equation
e Commutation relations
* Angular Momentum

* Fermi’s Golden Rule rate of a process breaks down into
* an amplitude

* phase space/density of states factor
* Introduced basic concepts of rate in:
* particle decays: decay rate and lifetimes
e scattering: (differential cross sections)
* A few new mathematical objects:
e Kronecker and Dirac ©
* &k

e Pauli matrices
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NEXT TIME

* Please read Chapter 3



THE PAULI MATRICES

e Define the matrices corresponding to our S; operators
h h(0 1 h R0 —i B (1 O

* eigenvectors corresponding to eigenstates of S, S..

h-(o) W-b-(7)

Dirac notation

(o %) (o) =2(0)
(4 5)(2)-

Pauli matrix notation

(V)



MORE ON PAULI MATRICES:

* Symbolic vs. Matrix form




TOTAL ANGULAR MOMENTUM

13 3) = W+ DR*3. 3) = %15, 3)
S?13,—1) =W+ D5, —3) = §1°13, —3)




