PHY489/1489: LECTURE 20
THE HIGGS BOSON

FINAL EXAMINATION

- Format:
- 4 short answer questions.
- Focus on some core concept
- Answered mainly by explaining with minimal calculation.
- 2 calculations
- Evaluate amplitude, cross section/rate for process
- Equation sheet will be provided
- additional information particular to a problem will be provided on the exam itself if needed.

LAST TIME:

- Last time, we introduced the Lagrangian formalism as an alternative to the equations of motion
- Local gauge symmetry works basically the same as before
- e.g. for a $U(1)$ gauge symmetry:
$\mathcal{L}_{D}=i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi=0$

$$
i \gamma^{\mu} \partial_{\mu} \psi-m \psi=0
$$

$\mathcal{L} \rightarrow \mathcal{L}-q \bar{\psi} \gamma^{\mu} \psi A_{\mu} \quad A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \theta$
$\partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu}+i q A_{\mu}$

- We found that local gauge symmetry forbids the gauge bosons from having mass
- We also found that the $S U(2)\llcorner\times U(1) y$ symmetry we introduced for the weak interaction also forbids fermion masses!

MORE ON THE MASS TERM

$$
\begin{aligned}
\mathcal{L}_{K G} & =\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2} \\
\mathcal{L}_{D} & =i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi=0 \\
\mathcal{L}_{P} & =-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\frac{1}{2} m^{2} A^{\mu} A_{\mu}
\end{aligned}
$$

- mass terms are quadratic in the field
- i.e. if there is a quadratic term in the lagrangian, it behaves as a mass.

"VACUUM EXPECTATION VALUE"

- Consider the Lagrangian

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)+\frac{1}{2} \mu^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4} \\
& \times
\end{aligned}
$$

- Note that $\phi=0$ is not a stable configuration
- the vacuum (e.g. lowest energy state) actually happens when ϕ has some non-zero value
- "vacuum expectation value" (VEV)
- Perturbation theory must start from a stable vacuum in order to work
- choose a vacuum state
- "spontaneous symmetry" breaking

TOY MODEL WITH CONTINUOUS SYMMETRY

- Consider a complex scalar Lagrangian:

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2}\left(\partial_{\mu} \phi^{*}\right)\left(\partial^{\mu} \phi\right)+\frac{1}{2} \mu^{2} \phi^{*} \phi-\frac{\lambda}{4}\left(\phi^{*} \phi\right)^{2} \\
& \phi=\phi_{1}+i \phi_{2}
\end{aligned}
$$

- Instead of two potential vacuum configurations, we now have an infinite number of connected states
- Expand about a vacuum point

$$
|\phi|=\frac{\mu}{\lambda}
$$

- let's also make it locally gauge invariant by introducing the "covariant derivative"
- that means we get a gauge boson along for the ride

$$
\begin{aligned}
& \partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu}+i q A_{\mu} \\
& \mathcal{L}=\frac{1}{2}\left(\partial_{\mu}-i q A_{\mu}\right) \phi^{*}\left(\partial^{\mu}+i q A^{\mu}\right) \phi+\frac{1}{2} \mu^{2} \phi^{*} \phi-\frac{\lambda}{4}\left(\phi^{*} \phi\right)^{2}-\frac{1}{16 \pi} F_{\mu \nu} F^{\mu \nu}
\end{aligned}
$$

BREAK THE SYMMETRY

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu}-i q A_{\mu}\right) \phi^{*}\left(\partial^{\mu}+i q A^{\mu}\right) \phi+\frac{1}{2} \mu^{2} \phi^{*} \phi-\frac{\lambda}{4}\left(\phi^{*} \phi\right)^{2}-\frac{1}{16 \pi} F_{\mu \nu} F^{\mu \nu}
$$

- choose a vacuum point: $\phi_{0}=\frac{\mu}{\lambda}$
- and reparametrize the fields as:

$$
\eta=\phi_{1}-\frac{\mu}{\lambda} \quad \chi=\phi_{2}
$$

- and rewrite the Lagrangian focussing on the kinetic part

$$
\begin{gathered}
\left(\partial_{\mu}-i q A_{\mu}\right) \phi^{*}\left(\partial^{\mu}+i q A^{\mu}\right) \phi \\
\Rightarrow\left[\left(\partial_{\mu}-i q A_{\mu}\right)\left(\eta+\frac{\mu}{\lambda}-i \chi\right)\right]\left[\left(\partial^{\mu}+i q A^{\mu}\right)\left(\eta+\frac{\mu}{\lambda}+i \chi\right)\right] \\
\longrightarrow \frac{1}{2}\left(\frac{\mu q}{\lambda}\right)^{2} A_{\mu} A^{\mu}
\end{gathered}
$$

this is a mass term for the vector particle $m_{A}=2 \sqrt{\pi} \frac{q \mu}{\lambda}$

HOW DID THIS HAPPEN:

- Recall that our gauge invariant Lagrangian

$$
\left(\partial_{\mu}-i q A_{\mu}\right) \phi^{*}\left(\partial^{\mu}+i q A^{\mu}\right) \phi
$$

- has a term $q^{2} A_{\mu} A^{\mu} \phi^{*} \phi$
- Normally, ϕ is just a normal field
- but the potential gives it a vacuum expectation (e.g. non-zero) base value that turns this into a mass term for A
- we chose a particular vacuum configuration but the result is independent of our choice
- the symmetry isn't "really" broken, just hidden by our choice

OTHER TERMS

$$
\Rightarrow\left[\left(\widehat{\partial_{\mu}}-i q A_{\mu}\right)\left(\eta+\frac{\mu}{\lambda}-i \chi\right)\right]\left[\left(\partial^{\mu}+i q A^{\mu}\right)\left(\eta+\frac{\mu}{\lambda}+i \chi\right)\right]
$$

- Note that the Lagrangian also includes a kinetic term for a massless field χ
- this is called a "Nambu-Goldstone boson"
- Another term:

$$
\frac{q \mu}{\lambda}\left(\partial_{\mu} \chi\right) A^{\mu} \quad \underline{\mathrm{A}} \times \chi
$$

- is problematic . . .
- The A particle spontaneously turns into χ 中 $\phi_{u t}$

ACCOUNTING ISSUE

$$
\begin{aligned}
& \left(\partial_{\mu}-i q A_{\mu}\right) \phi^{*}\left(\partial^{\mu}+i q A^{\mu}\right) \phi \\
\Rightarrow & {\left[\left(\partial_{\mu}-i q A_{\mu}\right)\left(\eta+\frac{\mu}{\lambda}-i \chi\right)\right]\left[\left(\partial^{\mu}+i q A^{\mu}\right)\left(\eta+\frac{\mu}{\lambda}+i \chi\right)\right] }
\end{aligned}
$$

- We started with:
- two scalar fields (ϕ_{1}, ϕ_{2} or alternatively ϕ^{*}, ϕ)
- a massless gauge boson (two polarizations)
- We end up with:
- two scalar fields ($\boldsymbol{\eta}, \boldsymbol{\chi}$)
- a massive gauge boson (three polarizations)
- where did the extra degree of freedom come from?

GAUGE TRANSFORMATION

$$
\Rightarrow\left[\left(\partial_{\mu}-i q A_{\mu}\right)\left(\eta+\frac{\mu}{\lambda}-i \chi\right)\right]\left[\left(\partial^{\mu}+i q A^{\mu}\right)\left(\eta+\frac{\mu}{\lambda}+i \chi\right)\right]
$$

- if we isolate the the terms related to χ and A

$$
\begin{aligned}
& \frac{1}{2}\left(\partial_{\mu} \chi\right)\left(\partial^{\mu} \chi\right)+\frac{q \mu}{\lambda}\left(\partial_{\mu} \chi\right) A^{\mu}+\frac{1}{2}\left(\frac{q \mu}{\lambda}\right)^{2} A_{\mu} A^{\mu} \\
& \frac{1}{2}\left(\frac{q \mu}{\lambda}\right)^{2}\left[A_{\mu}+\frac{\lambda}{q \mu}\left(\partial_{\mu} \chi\right)\right]\left[A^{\mu}+\frac{\lambda}{q \mu}\left(\partial^{\mu} \chi\right)\right]
\end{aligned}
$$

- this last transformation effectively represents a gauge transformation

$$
A_{\mu} \rightarrow A_{\mu}+\frac{\lambda}{q \mu}\left(\partial_{\mu} \chi\right)
$$

- "gauge transform" to make χ disappear explicitly from the Lagrangian
- the χ field corresponds to the "new" longitudinal polarization of the A
- "The gauge boson ate the Goldstone boson"

GAUGE COUPLINGS

$$
\begin{aligned}
\Rightarrow & {\left[\left(\partial_{\mu}-i q A_{\mu}\right)\left(\eta+\frac{\mu}{\lambda}-i \chi\right)\right]\left[\left(\partial^{\mu}+i q A^{\mu}\right)\left(\eta+\frac{\mu}{\lambda}+i \chi\right)\right] } \\
& q^{2} A_{\mu} A^{\mu} \eta^{2} \quad \mathrm{~A} \\
\Rightarrow & {\left[\left(\partial_{\mu}-i q A_{\mu}\right)\left(\eta+\frac{\mu}{\lambda}-i \chi\right)\right]\left[\left(\partial^{\mu}+i q A^{\mu}\right)\left(\eta+\frac{\mu}{\lambda}+i \chi\right)\right] } \\
& q^{2} \frac{\mu}{\lambda} A_{\mu} A^{\mu} \eta \quad \mathrm{\eta} \cdots \cdots<\mathrm{A}
\end{aligned}
$$

CONCLUSIONS OF THE TOY STORY

- We made a theory of a "charged" scalar boson:

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi^{*}\right)\left(\partial^{\mu} \phi\right)+\frac{1}{2} \mu^{2} \phi^{*} \phi-\frac{\lambda}{4}\left(\phi^{*} \phi\right)^{2}
$$

- where the vacuum states have $\phi \neq 0$
- enforce $U(1)$ gauge invariance

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu}-i q A_{\mu}\right) \phi^{*}\left(\partial^{\mu}+i q A^{\mu}\right) \phi+\frac{1}{2} \mu^{2} \phi^{*} \phi-\frac{\lambda}{4}\left(\phi^{*} \phi\right)^{2}-\frac{1}{16 \pi} F_{\mu \nu} F^{\mu \nu}
$$

- expand about arbitrary vacuum point:

$$
\eta=\phi_{1}-\frac{\mu}{\lambda} \quad \chi=\phi_{2}
$$

- we end up with:
- a mass term for the gauge boson
- a massive scalar field
- massless scalar field becomes extra polarization of the massive gauge boson.
- various (self) interactions between the scalar field and gauge boson
- note that these interactions are not optional. .. . they must be there!

ELECTROWEAK SYMMETRY BREAKING

- We consider a weak isodoublet of Higgs fields

$$
\phi=\binom{\phi^{+}}{\phi^{0}} \equiv \frac{1}{\sqrt{2}}\binom{\phi_{1}+i \phi_{2}}{\phi_{3}+i \phi_{4}}
$$

- with $\mathrm{Y}=1=2\left(\mathrm{Q}-\mathrm{I}_{3}\right)$: top/bottom component has $\mathrm{Q}=1,0$
- with the Lagrangian:

$$
\mathcal{L}=\left(\partial_{\mu} \phi\right)^{\dagger}\left(\partial_{\mu} \phi\right)-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

- ϕ has a "ring" of degenerate vacuum states at

$$
\phi^{\dagger} \phi=-\frac{\mu^{2}}{2 \lambda} \quad \phi=\frac{1}{\sqrt{2}}\binom{0}{v+h(x)}
$$

- Introduce gauge symmetry under $\operatorname{SU}(2) \mathrm{LxU}(1)_{\mathrm{Y}}$

$$
\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}+i g_{W} \vec{\tau} \cdot \mathbf{W}_{\mu}+i g^{\prime} \frac{Y}{2} B_{\mu}
$$

THE COVARIANT DERIVATIVE

$$
\begin{gathered}
\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}+i g_{W} \vec{\tau} \cdot \mathbf{W}_{\mu}+i g^{\prime} \frac{Y}{2} B_{\mu} \\
\left(\begin{array}{cc}
\partial_{\mu} & 0 \\
0 & \partial_{\mu}
\end{array}\right)+i \frac{g_{W}}{2}\left[\left(\begin{array}{cc}
W_{\mu}^{3} & 0 \\
0 & -W_{\mu}^{3}
\end{array}\right)+\left(\begin{array}{cc}
0 & W_{\mu}^{1}-i W_{\mu}^{2} \\
W_{\mu}^{1}+i W_{\mu}^{2} & 0
\end{array}\right)\right]+i \frac{g^{\prime}}{2}\left(\begin{array}{cc}
B_{\mu} & 0 \\
0 & B_{\mu}
\end{array}\right)
\end{gathered}
$$

$$
\frac{1}{2}\left(\begin{array}{cc}
2 \partial_{\mu}+i g_{W} W_{\mu}^{3}+i g^{\prime} B_{\mu} & i g_{w}\left(W_{\mu}^{1}-i W_{\mu}^{2}\right) \\
i g_{w}\left(W_{\mu}^{1}+i W_{\mu}^{2}\right) & 2 \partial_{\mu}-i g_{W} W_{\mu}^{3}+i g^{\prime} B_{\mu}
\end{array}\right) \frac{1}{\sqrt{2}}\binom{0}{v+h(x)}
$$

$$
\frac{1}{2 \sqrt{2}}\binom{i g_{w}\left(W_{\mu}^{1}-i W_{\mu}^{2}\right)}{2 \partial_{\mu}-i g_{W} W_{\mu}^{3}+i g^{\prime} B_{\mu}}(v+h)
$$

THE KINEMATIC TERM:

$$
\mathcal{L}_{K}=\left(\partial_{\mu} \phi\right)^{\dagger}\left(\partial_{\mu} \phi\right) \rightarrow\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)
$$

$$
D_{\mu} \phi=\frac{1}{2 \sqrt{2}}\left(\frac{\sqrt{i g_{w}\left(W_{\mu}^{1}-i W_{\mu}^{2}\right)}}{2 \partial_{\mu}-i g_{W} W_{\mu}^{3}+i g^{\prime} B_{\mu}}\right)(v+h)
$$

$$
\frac{1}{2}\left(\partial_{\mu} h\right)\left(\partial^{\mu} h\right)
$$

$$
\frac{g_{W}^{2}}{8}\left(W_{\mu}^{1}+i W_{\mu}^{2}\right)\left(W^{1 \mu}-i W^{2 \mu}\right)(v+h)^{2}
$$

$$
\frac{1}{8}\left(i g_{W} W_{\mu}^{3}-i g^{\prime} B_{\mu}\right)\left(-i g_{w} W^{3 \mu}+i g^{\prime} B^{\mu}\right)(v+h)^{2}
$$

MASS TERMS

- quadratic in fields with a constant

$$
\begin{gathered}
\frac{g_{W}^{2}}{8}\left(W_{\mu}^{1}+i W_{\mu}^{2}\right)\left(W^{1 \mu}-i W^{2 \mu}\right)(v+h)^{2} \\
\frac{g_{W}^{2} v^{2}}{8}\left(W_{\mu}^{1} W^{1 \mu}+W_{\mu}^{2} W^{2 \mu}\right)=\frac{m_{W}^{2}}{2}\left(W_{\mu}^{1} W^{1 \mu}+W_{\mu}^{2} W^{2 \mu}\right) \\
m_{W}=\frac{1}{2} g_{W} v \\
\frac{1}{8}\left(i g_{W} W_{\mu}^{3}-i g^{\prime} B_{\mu}\right)\left(-i g_{W} W^{3 \mu}+i g^{\prime} B^{\mu}\right)(v+h)^{2} \\
\frac{1}{8}\left(g_{W} W_{\mu}^{3}-g^{\prime} B_{\mu}\right)\left(g_{W} W^{3 \mu}-g^{\prime} B^{\mu}\right)(v+h)^{2} \\
\frac{v^{2}}{8}\left(W_{\mu}^{3}, B_{\mu}\right)\left(\begin{array}{cc}
g_{W}^{2} & -g_{W} g^{\prime} \\
-g_{W} g^{\prime} & g^{\prime 2}
\end{array}\right)\binom{W^{3 \mu}}{B^{\mu}}
\end{gathered}
$$

DIAGONALIZE MATRIX

$$
\begin{aligned}
& \frac{v^{2}}{8}\left(W_{\mu}^{3}, B_{\mu}\right)\left(\begin{array}{cc}
g_{W}^{2} & -g_{W} g^{\prime} \\
-g_{W} g^{\prime} & g^{\prime 2}
\end{array}\right)\binom{W^{3 \mu}}{B^{\mu}} \\
& \left|\left(\begin{array}{cc}
g_{W}^{2}-\lambda & -g_{W} g^{\prime} \\
-g_{W} g^{\prime} & g^{\prime 2}-\lambda
\end{array}\right)\right|=0 \quad\left(g_{W}^{2}-\lambda\right)\left(g^{\prime 2}-\lambda\right)-g_{W}^{2} g^{\prime 2}=0 \\
& \lambda^{2}-\left(g_{W}^{2}+g^{\prime 2}\right) \lambda=0 \quad \lambda=0, g_{W}^{2}+g^{\prime 2} \\
& \frac{v^{2}}{8}\left(A_{\mu}, Z_{\mu}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & g_{W}^{2}+g^{\prime 2}
\end{array}\right)\binom{A^{\mu}}{Z^{\mu}}
\end{aligned}
$$

$$
m_{A}=0 \quad m_{Z}=\frac{v}{2} \sqrt{g_{W}^{2}+g^{\prime 2}}
$$

COMPARE W/Z MASSES

$$
\begin{aligned}
m_{W} & =\frac{1}{2} g_{W} v \quad m_{Z}=\frac{v}{2} \sqrt{g_{W}^{2}+g^{\prime 2}} \\
\frac{m_{W}}{m_{Z}} & =\frac{g_{W}}{\sqrt{g_{W}^{2}+g^{\prime 2}}} \quad g_{Z} \equiv \frac{g}{\cos \theta_{W}}=\frac{e}{\sin \theta_{W} \cos \theta_{W}} \\
\frac{m_{W}}{m_{Z}} & =\frac{g_{W}}{\sqrt{g_{W}^{2}+g^{\prime 2}}}=\frac{g_{Z} \sin \theta_{W}}{\sqrt{g_{Z}^{2} \cos ^{2} \theta+g_{Z}^{2} \sin ^{2} \theta_{W}}}=\cos \theta_{W}
\end{aligned}
$$

ONE REMAINING ISSUE

- The fermion masses!

$$
\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}
$$

- we found this breaks gauge symmetry because it couples an $S U(2)$ L doublet to a $S U(2)\llcorner$ singlet

$$
\mathcal{L}_{Y}=-g_{e}\left[\left(\bar{\nu}_{L}, \bar{e}_{L}\right)\binom{\phi^{+}}{\phi^{0}} e_{R}+h . c .\right]
$$

- by coupling the left chiral fields to the Higgs field, we can generate an overall singlet.
- by acquiring a vacuum expectation value, this becomes the mass of the electron.
- $g_{e} v \sim m_{e}$

CONCLUSIONS:

- Gauge invariance forces us to make back doors for introducing mass into our theory
- Spontaneous symmetry breaking gives us a way of introducing a "constant" background with gauge quantum numbers to produce mass terms that preserve gauge symmetry
- As a consequence there is a tight interconnection between
- the vacuum expectation value
- gauge couplings
- gauge boson masses
- effectively fixed by the model and tested and can be tested.
- In the electroweak model, the fermion masses can be generated in the same way.
- Fixes relation between vev, fermion mass, and Higgs coupling to the fermion

LAST LECTURE WITH "NEW CONTENT"

- Next (last) lecture:
- contemporary issues/problems
- Higgs bosons
- work a problem or two
- let me know if you have questions or particular things you want me to review.

