H. A. TANAKA
PHYSICS 489/1489

LECTURE 2: SPECIAL RELATIVITY

OFFICE HOURS

	~	~	V	¥	~	~	V	V	~	
		?	4			?	4	4	4	4
		?	4			?	4		4	4
		?	~	~	~	?				
		~				~	~		~	~
			*					*		
	~	~	~				*			
			~				~			
									~	
0	2	3	7	2	2	2	6	3	5	3
1:00 PM - 3:00 PM	2:00 PM - 4:00 PM	3:00 PM = 5:00 PM	3:00 PM - 5:00 PM	1:00 PM - 3:00 PM	2:00 PM = 4:00 PM	3:00 PM = 4:45 PM	3:00 PM - 5:00 PM	1:00 PM - 3:00 PM	2:00 PM - 4:00 PM	3:00 PM - 5:00 PM
MON	MON	MON	TUE	WED	WED	WED	THU	FRI	FRI	FRI
Sep 11	Sep 11	Sep 11	Sep 12	Sep 13	Sep 13	Sep 13	Sep 14	_{Ѕер}	Sep 15	Sep 15

- Tuesday 1500-1700
- Friday 1400-1600
- everyone who
 responded should be
 able to attend one of
 those time slots
- if you would like to meet outside of these time slots, please contact me and arrange in advance

OVERVIEW

- Review of central postulates of special relativity
- Review some consequences
- Introduce four-vector and index notation
- Develop Lorentz algebra
- Invariant quantities
- Energy/momentum conservation

SPECIAL RELATIVITY

- Postulates:
 - the laws of physics are the same in all inertial reference frames
 - the velocity of light is the same in all reference frames
- Consequences:
 - simultaneity is relative; different according to reference frame
 - Lorentz (length) contraction
 - Time dilation
 - Strange velocity addition properties
 - speed of light is the same if you move towards it or away from it

LORENTZ TRANSFORMATION

- In 3D space, we know how coordinates "transform"
- There are corresponding transformations in SR
 - space and time coordinates w.r.t a frame moving with constant velocity to the original frame

$$t' = \gamma(t - \frac{v}{c^2}x) \qquad t = \gamma(t' + \frac{v}{c^2}x')$$

$$x' = \gamma(x - vt) \qquad x = \gamma(x' + vt')$$

$$y' = y \qquad y = y'$$

$$z' = z \qquad z = z'$$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

LORENTZ TRANSFORMATION

- In 3D space, we know how coordinates "transform"
- There are corresponding transformations in SR
 - space and time coordinates w.r.t a frame moving with constant velocity to the original frame

$$\begin{aligned}
 & t' &= \gamma(t - \frac{v}{c^2}x) & t &= \gamma(t' + \frac{v}{c^2}x') \\
 & x' &= \gamma(x - vt) & x &= \gamma(x' + vt') \\
 & y' &= y & y &= y' \\
 & z' &= z & z &= z'
 \end{aligned}$$

$$\begin{aligned}
 & t' &= \gamma(t - \frac{v}{c^2}x') \\
 & x &= \gamma(x' + vt') \\
 & y &= y' \\
 & z &= z'
 \end{aligned}$$

$$& t_A - t_B' = \gamma(t_A - t_B + \frac{v}{c^2}(x_B - x_A))$$

relativity of simultaneity and time dilation

$$x'_A - x'_B = \gamma(x_A - x_B + v(t_B - t_A))$$

length contraction

RELABELING . . .

- Defining "4-vectors"
 - 3-vectors are objects like x, y, z components of something
 - think of t, x, y, z as components of a "4-vector"

$$t' = \gamma(t - \frac{v}{c^2}x)$$

$$x' = \gamma(x - vt)$$

$$y' = y$$

$$z' = z$$

$$t = \gamma(t' + \frac{v}{c^2}x')$$

$$x = \gamma(x' + vt')$$

$$y = y'$$

$$z = z'$$

• space-time 4-vector (ct, x, y, z) \rightarrow (x⁰, x¹, x², x³) $\beta = v/c$ $x^{0'} = \gamma(x^0 - \beta x^1) \qquad x^0 = \gamma(x'^0 + \beta x'^1)$

$$x^{1'} = \gamma(x^1 - \beta x^0)$$
 $x^1 = \gamma(x'^1 + \beta x'^0)$
 $x^{2'} = x^2$ $x^2 = x'^2$
 $x^{3'} = x^3$ $x^3 = x'^3$

basically just a unit conversion to make it consistent

MATRIX AND COMPONENT FORM

We can write the transformations in matrix form . . .

- Or index form:
 - use indices to to express the matrix algebra:

$$x^{\mu'} = \sum_{\nu} \Lambda^{\mu}_{\nu} x^{\nu}$$

$$\downarrow^{\nu}$$

$$x^{\mu'} = \Lambda^{\mu}_{0} x^{0} + \Lambda^{\mu}_{1} x^{1} + \Lambda^{\mu}_{2} x^{2} + \Lambda^{\mu}_{3} x^{3}$$

note "upstairs" (superscript), "downstairs" (subscript) indices

SUMMATION NOTATION

 If two indices are repeated with the same letter, summation "over" that index is implied

$$x^{\mu\prime} = \sum_{\nu} \Lambda^{\mu}_{\nu} x^{\nu} \to \Lambda^{\mu}_{\nu} x^{\nu}$$

- repeated index = "contracted", non-repeated "free"
- Define:
 - "contravariant" 4-vector: $x^0 = ct$, $x^1 = x$, $x^2 = y$, $x^3 = z$
 - "covariant" 4-vector: $x_0=ct$, $x_1=-x$, $x_2=-y$, $x_3=-z$
- Summation is always over covariant and contravariant indices
 - just a way to keep track of that "minus" sign
- The index notation is insensitive to the ordering of terms

THE METRIC TENSOR

contra/covariant 4-vectors are related by:

$$x^{\mu} = g^{\mu\nu} x_{\nu} \qquad \qquad g^{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

- another way to keep track of the "minus sign"
- "Metric":

$$g^{\mu\nu}x_{\mu}x_{\nu} \to x_{\mu}x^{\mu}$$

- invariant under Lorentz transformations
 - same in all reference frames
 - what is the analog for a three vector?

GENERALIZATION

We can take two four vectors and take their product

$$a \cdot b = a^{\mu}b_{\mu} = a_{\mu}b^{\mu} = a^{\mu}b^{\nu}g_{\mu\nu}...$$

- this is also invariant with respect to Lorentz transformations
- Indices tell us how to classify quantities by how they transform
 - invariant/"scalar": no free indices, do not "transform" or depend on reference frame
 - "vector": one free index:

$$x^{\mu\prime} = \Lambda^{\mu}_{\nu} x^{\nu}$$

• "tensor": one Λ for each free index:

$$\Lambda_1^{\mu\nu\prime} \to \Lambda_2^{\mu}_{\rho} \Lambda_2^{\nu}_{\sigma} \Lambda_1^{\rho\sigma} \qquad x^{\mu\prime} y^{\nu\prime} = \Lambda^{\mu}_{\rho} \Lambda^{\nu}_{\sigma} x^{\rho} y^{\sigma}$$

ENERGY-MOMENTUM:

Problem 2.4

We can construct the "energy/momentum" 4-vector:

$$au = rac{t}{\gamma}$$

• take derivatives of the space-time vector wrt. τ :

$$\eta^{\mu} = \frac{dx^{\mu}}{d\tau} = \gamma(\frac{d(ct)}{dt}, \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}) = \gamma(c, \vec{v})$$

- can show that $\eta^{\mu}\eta_{\mu} = c^2 \rightarrow \eta^{\mu}$ is a 4-vector
- Multiply η^{μ} by the mass of the particle to define p^{μ}
 - $p^{\mu} = (\gamma mc, \gamma mv) = (E/c, p)$
 - defines the energy/momentum of an object with invariant product mc²
 - each component is a conserved quantity
- Examples of other 4-vectors?

DECAYS AND SCATTERS

• Decays: $A \rightarrow B+C$

• Scattering: $A + B \rightarrow C + D + E + ...$

CONSERVATION

Energy conservation

$$\sum_{i} E_{I}^{i} = \sum_{j} E_{F}^{j} \qquad \qquad \sum_{i} p_{I}^{i\mu} = \sum_{j} p_{F}^{j\mu}$$

$$\sum_{i} p_{I}^{i\mu} = \sum_{j} p_{F}^{j\mu}$$

Momentum Conservation

$$\sum_i p_{y_I}^i = \sum_j p_{y_F}^j \quad \Longrightarrow \quad \sum_i \vec{p}_I^i = \sum_j \vec{p}_F^j$$

INVARIANTS

- "dot" product of two 4-vectors to make a scalar:
 - $a \cdot b = a^0 b^0 a^1 b^1 a^2 b^2 a^3 b^3 = a^0 b^0 a \cdot b$
 - = $a^{\mu}b_{\mu}$, $a_{\mu}b^{\mu}$, $g_{\mu\nu}$ $a^{\mu}b^{\nu}$, etc.
- Explicitly in terms of two -4momentum vectors:
 - $p_1 \cdot p_2 = p_1^0 p_2^0 p_1^1 p_2^1 p_1^2 p_2^2 p_1^3 p_2^3 = E_1 E_2 / c^2 p_1 \cdot p_2$
 - the dot product of a four momentum with itself:
 - $p_1 \cdot p_1 = p_1^2 = (E_1/c)^2 p_1^2 = \dots$
- Invariants:
 - are the same in all reference frames
 - reduces multicomponent equation to scalar quantities
 - they may save you from having to explicitly evaluate by choosing a reference frame/coordinate frame
 - If massless particles are involved, it will eliminate terms

REFERENCE FRAMES:

- We will typically operate in two kinds of reference frames:
- Centre-Of-Momentum
 - sum of momentum is zero

$$\sum_{i} \vec{p}_{I}^{i} = 0$$

decay of particle at rest, colliding beams

Lab frame: scattering with one particle at rest

SETTING UP THE KINEMATICS

$$p_A = p_B + p_C$$

$$p_A^2 = (p_B + p_C)^2$$

$$= p_B^2 + p_C^2 + 2p_A \cdot p_B$$

$$m_A^2 c^2 = m_B^2 c^2 + m_C^2 c^2 + 2p_A \cdot p_B$$

$$p_A + p_B = p_C + p_D$$

$$(p_A + p_B)^2 = (p_C + p_D)^2$$

$$m_A^2 + m_B^2 + 2p_A \cdot p_B = m_C^2 + m_D^2 + 2p_C \cdot p_D$$

$$p_A + p_B = p_C + p_D$$
$$p_A + p_B - p_C = p_D$$
$$(p_A + p_B - p_C)^2 = p_D^2$$

$$m_A^2 c^2 + m_B^2 c^2 + m_C^2 c^2 + 2p_A \cdot p_B - 2p_A \cdot p_C - 2p_B \cdot p_C = m_D^2 c^2$$

LABORATORY-FRAME SCATTERING

- Consider the process $A + B \rightarrow C$ where B is at rest.
 - What energy of A required to produce C?
 - Assign labels : A $\rightarrow p_A$, B $\rightarrow p_B$, C $\rightarrow p_C$
 - Conservation of 4-momentum:

$$p_A + p_B = p_C$$

Square the equation:

$$(p_A + p_B)^2 = p_C^2$$

$$(p_A + p_B)^2 = p_C^2$$
 $p_A^2 + p_B^2 + 2(p_A \cdot p_B) = p_C^2$

$$m_A^2 c^2 + m_B^2 c^2 + 2(p_A \cdot p_B) = m_C^2 c^2$$

Now in the lab frame:

$$p_A = (E_A/c, \mathbf{p}_A)$$

$$p_B = (m_B c, \mathbf{0})$$

$$p_A \cdot p_B = E_A m_B$$

$$p_A \cdot p_B = E_A m_B \qquad E_A = \frac{m_C^2 c^2 - m_A^2 c^2 - m_B^2 c^2}{2m_B}$$

APPLICATION:

• What minimum energy is required for the reaction:

$$p+p \rightarrow p+p+p+\bar{p}$$

- with one of the initial protons at rest to proceed?
- in the lab frame, it is complicated since the outgoing products must be in motion to conserve momentum
- in the CM frame, however, the minimum energy configuration is where the outgoing products are at rest.
 - (kinematically equivalent A+B \rightarrow C, C=a single particle of mass 4m_p)

$$E_1 = \frac{m_3^2 c^2 - m_1^2 c^2 - m_2^2 c^2}{2m_2}$$

- set $m_3 = 4m_p$, m_1 , $m_2 = m_p$
- $E_1 = 7 \, m_p c^2$
- Note "conservation" vs. "invariance"

COMPTON SCATTERING:

- Consider the process $\gamma + e \rightarrow \gamma + e$ where the electron is initially at rest.
 - If the γ scatters by an angle θ , what is it's outgoing energy?
 - Assign labels:
 - p_1 = incoming photon, p_2 = initial electron
 - p_3 = outgoing photon, p_4 = outgoing electron
 - Conservation of 4-momentum:

$$p_1 + p_2 = p_3 + p_4$$
 $p_1 + p_2 - p_3 = p_4$

• Square the equation:

$$(p_1 + p_2 - p_3)^2 = p_4^2 p_1^2 + p_2^2 + p_3^2 + 2(p_1 \cdot p_2 - p_1 \cdot p_3 - p_2 \cdot p_3) = p_4^2$$
$$m_e^2 c^2 + 2(p_1 \cdot p_2 - p_1 \cdot p_3 - p_2 \cdot p_3) = m_e^2 c^2$$

Now in the lab frame:

$$p_1 = (E_1/c, \mathbf{p}_1)$$
 $p_1 \cdot p_2 = E_1 m_e$
 $p_2 = (m_e c, \mathbf{0})$ $p_1 \cdot p_3 = E_1 E_3/c^2 - \mathbf{p}_1 \cdot \mathbf{p}_3 = E_1 E_3 (1 - \cos \theta)/c^2$
 $p_3 = (E_3/c, \mathbf{p}_3)$ $p_2 \cdot p_3 = E_3 m_e$

TIPS/HINTS

- Start by setting up 4-momentum conservation equation
- Typically, it will be helpful to square the expression at some point
 - reduce from 4 equations to one
 - note that squared 4-momentum is the mass of the particle!
 - move expressions around based on what quantity you are after and specifics of reference frame (which particle(s) are at rest, etc0.
- Be sure to keep track of what is
 - 4-momentum
 - 3-momentum
 - energy
 - critical to "internalize" this as quickly as possible. . . common stumbling block
- Make use of invariants if possible
 - quantities which are independent of reference frame

SUMMARY

- Review of special relativity postulates
- Introduce 4-vectors:
 - time + spatial coordinates
 - energy + momentum
- Index notation to represent "tensor" algebra
 - summation convention
 - formation of invariant quantities
- Kinematics using 4-momentum
 - 4-momentum conservation
 - use of invariant quantities
 - Frames: centre-of-momentum vs. laboratory

FOR NEXT TIME:

• Please read Chapter 2.3