H. A. TANAKA

PHYSICS 489/1489

LECTURE 2: SPECIAL RELATIVITY

OFFICE HOURS

$\begin{gathered} \text { Sep } \\ 11 \\ \text { MON } \\ \text { 1:00 PM }- \\ 3.00 \mathrm{PM} \end{gathered}$		$\begin{gathered} \text { sep } \\ 11 \\ \mathrm{mON} \\ 3: 00 \mathrm{PM} \\ \text { 5:00 PM } \end{gathered}$		$\begin{gathered} \text { sep } \\ 13 \\ \text { WED } \\ \text { 1:00 PM } \\ 3: 00 \mathrm{PM} \end{gathered}$		$\begin{gathered} \text { Sep } \\ 13 \\ \text { WED } \\ 3: 00 \mathrm{PM}- \\ 4: 45 \mathrm{PM} \end{gathered}$	$\begin{gathered} \text { Sep } \\ \mathbf{1 4} \\ \text { THU } \\ 3: 00 \mathrm{PM} \\ 5.00 \mathrm{PM} \end{gathered}$	$\begin{gathered} \text { Sep } \\ 15 \\ \text { FRI } \\ \text { 1:00 PM }= \\ 3: 00 \mathrm{PM} \end{gathered}$			- Tuesday 1500-1700 - Friday 1400-1600
0	2	3	7	2	2	2	6	3	5	3	- everyone who
\square	\square	-	-	\square	\square	-	\square	-	\square		responded should be
									\checkmark		able to attend one of
			\checkmark				\checkmark				those time slots
	\checkmark	\checkmark	\checkmark				\checkmark				
			\checkmark					\checkmark			- if you would like to
		\checkmark				\checkmark	\checkmark		\checkmark	\checkmark	meet outside of these
		?	\checkmark	\checkmark	\checkmark	?					time slots, please
		?	\checkmark			?	\checkmark		\checkmark	\checkmark	contact me and
		?	\checkmark			?	\checkmark	\checkmark	\checkmark	\checkmark	
	\checkmark				arrange in advance						

OVERVIEW

- Review of central postulates of special relativity
- Review some consequences
- Introduce four-vector and index notation
- Develop Lorentz algebra
- Invariant quantities
- Energy/momentum conservation

SPECIAL RELATIVITY

- Postulates:
- the laws of physics are the same in all inertial reference frames
- the velocity of light is the same in all reference frames
- Consequences:
- simultaneity is relative; different according to reference frame
- Lorentz (length) contraction
- Time dilation
- Strange velocity addition properties
- speed of light is the same if you move towards it or away from it

LORENTZ TRANSFORMATION

- In 3D space, we know how coordinates "transform"
- There are corresponding transformations in SR
- space and time coordinates w.r.t a frame moving with constant velocity to the original frame

$$
\begin{array}{ll}
t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} x\right) & t=\gamma\left(t^{\prime}+\frac{v}{c^{2}} x^{\prime}\right) \\
x^{\prime}=\gamma(x t) & x=\gamma\left(x^{\prime}+v t^{\prime}\right) \\
y^{\prime}=y & y=y^{\prime} \\
z^{\prime}=z & z=z^{\prime} \\
&
\end{array}
$$

LORENTZ TRANSFORMATION

- In 3D space, we know how coordinates "transform"
- There are corresponding transformations in SR
- space and time coordinates w.r.t a frame moving with constant velocity to the original frame

$$
\begin{aligned}
t^{\prime} & =\gamma\left(t-\frac{v}{c^{2}} x\right) \\
x^{\prime} & =\gamma(x-v t) \\
y^{\prime} & =y \\
z^{\prime} & =z
\end{aligned}
$$

$$
t=\gamma\left(t^{\prime}+\frac{v}{c^{2}} x^{\prime}\right)
$$

$$
x=\gamma\left(x^{\prime}+v t^{\prime}\right)
$$

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

$$
t_{A}^{\prime}-t_{B}^{\prime}=\gamma\left(t_{A}-t_{B}+\frac{v}{c^{2}}\left(x_{B}-x_{A}\right)\right)
$$

relativity of simultaneity and time dilation
$x_{A}^{\prime}-x_{B}^{\prime}=\gamma\left(x_{A}-x_{B}+v\left(t_{B}-t_{A}\right)\right)$
length contraction

RELABELING

- Defining " 4 -vectors"
- 3-vectors are objects like x, y, z components of something
- think of t, x, y, z as components of a "4-vector"

$$
\begin{array}{lll}
t^{\prime} & =\gamma\left(t-\frac{v}{c^{2}} x\right) & t=\gamma\left(t^{\prime}+\frac{v}{c^{2}} x^{\prime}\right) \\
x^{\prime}=\gamma(x-v t) & x=\gamma\left(x^{\prime}+v t^{\prime}\right) \\
y^{\prime}=y & y=y^{\prime} \\
z^{\prime}=z & z=z^{\prime}
\end{array}
$$

- space-time 4 -vector $(c t, x, y, z) \rightarrow\left(\mathrm{x}^{0}, \mathrm{x}^{1}, \mathrm{x}^{2}, \mathrm{x}^{3}\right)$
$\beta=v / c$

$$
\begin{array}{ll}
x^{0^{\prime}}=\gamma\left(x^{0}-\beta x^{1}\right) & x^{0}=\gamma\left(x^{0}+\beta x^{\prime 1}\right) \\
x^{1^{\prime}}=\gamma\left(x^{1}-\beta x^{0}\right) & x^{1}=\gamma\left(x^{\prime 1}+\beta x^{\prime 0}\right) \\
x^{2^{\prime}}=x^{2} & x^{2}=x^{\prime 2} \\
x^{3^{\prime}}=x^{3} & x^{3}=x^{\prime 3}
\end{array}
$$

basically just a unit conversion to make it consistent

MATRIX AND COMPONENT FORM

- We can write the transformations in matrix form . . .

$$
\begin{aligned}
& \begin{array}{l}
x^{0^{\prime}}=\gamma\left(x^{0}-\beta x^{1}\right) \\
x^{1^{1}}=\gamma\left(x^{1}-\beta x^{0}\right) \\
x^{2^{\prime}}=x^{2} \\
x^{3^{\prime}}=x^{3}
\end{array} \\
&
\end{aligned}
$$

- Or index form:
- use indices to to express the matrix algebra:

$$
\begin{aligned}
x^{\mu \prime}= & \sum_{\nu} \Lambda_{\nu}^{\mu} x^{\nu} \\
& \underset{\downarrow}{\boldsymbol{\nabla}} \\
x^{\mu \prime}= & \Lambda_{0}^{\mu} x^{0}+\Lambda_{1}^{\mu} x^{1}+\Lambda_{2}^{\mu} x^{2}+\Lambda_{3}^{\mu} x^{3}
\end{aligned}
$$

- note "upstairs" (superscript), "downstairs" (subscript) indices

SUMMATION NOTATION

- If two indices are repeated with the same letter, summation "over" that index is implied

$$
x^{\mu^{\prime}}=\sum_{\nu} \Lambda_{\nu}^{\mu} x^{\nu} \rightarrow \Lambda_{\nu}^{\mu} x^{\nu}
$$

- repeated index = "contracted", non-repeated "free"
- Define:
- "contravariant" 4-vector: $x^{0}=c t, x^{l}=x, x^{2}=y, x^{3}=z$
- "covariant" 4-vector: $x_{0}=c t, x_{1}=-x, x_{2}=-y, x_{3}=-z$
- Summation is always over covariant and contravariant indices
- just a way to keep track of that "minus" sign
- The index notation is insensitive to the ordering of terms

THE METRIC TENSOR

- contra/covariant 4-vectors are related by:

$$
x^{\mu}=g^{\mu \nu} x_{\nu} \quad g^{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

- another way to keep track of the "minus sign"
- "Metric":

$$
g^{\mu \nu} x_{\mu} x_{\nu} \rightarrow x_{\mu} x^{\mu}
$$

- invariant under Lorentz transformations
- same in all reference frames
- what is the analog for a three vector?

GENERALIZATION

- We can take two four vectors and take their product

$$
a \cdot b=a^{\mu} b_{\mu}=a_{\mu} b^{\mu}=a^{\mu} b^{\nu} g_{\mu \nu} . .
$$

- this is also invariant with respect to Lorentz transformations
- Indices tell us how to classify quantities by how they transform
- invariant/"scalar": no free indices, do not "transform" or depend on reference frame
- "vector": one free index:

$$
x^{\mu^{\prime}}=\Lambda_{\nu}^{\mu} x^{\nu}
$$

- "tensor": one Λ for each free index:

$$
\Lambda_{1}{ }^{\mu \nu \prime} \rightarrow \Lambda_{2}{ }_{\rho}^{\mu} \Lambda_{2}{ }_{\sigma}^{\nu} \Lambda_{1}{ }^{\rho \sigma} \quad x^{\mu \prime} y^{\nu \prime}=\Lambda_{\rho}^{\mu} \Lambda_{\sigma}^{\nu} x^{\rho} y^{\sigma}
$$

ENERGY-MOMENTUM:

- We can construct the "energy/momentum" 4-vector:

$$
\tau=\frac{t}{\gamma}
$$

- take derivatives of the space-time vector wrt. τ :

$$
\eta^{\mu}=\frac{d x^{\mu}}{d \tau}=\gamma\left(\frac{d(c t)}{d t}, \frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right)=\gamma(c, \vec{v})
$$

- can show that $\eta^{\mu} \eta_{\mu}=c^{2} \rightarrow \eta^{\mu}$ is a 4-vector
- Multiply η^{μ} by the mass of the particle to define p^{μ}
- $p^{u}=(\gamma m c, \gamma m \boldsymbol{v})=(E / c, \mathbf{p})$
- defines the energy/momentum of an object with invariant product mc^{2}
- each component is a conserved quantity
- Examples of other 4 -vectors?

DECAYS AND SCATTERS

- Decays: $A \rightarrow B+C$

- Scattering: $A+B \rightarrow C+D+E+$. .

CONSERVATION

- Energy conservation

Four equations relating the initial and final state energies and momenta

$$
\sum_{i} p_{I}^{i \mu}=\sum_{j} p_{F}^{j}{ }_{F}^{\mu}
$$

- Momentum Conservation

$$
\sum_{i} p_{v_{1}}^{i}=\sum_{j} p_{p_{P}}^{p_{i}}
$$

$$
\prod_{\sum_{i} i t=\sum_{j}^{p}}^{\substack{i}}
$$

- "dot" product of two 4-vectors to make a scalar:
- $a \cdot b=a^{0} b^{0}-a^{1} b^{1}-a^{2} b^{2}-a^{3} b^{3}=a^{0} b^{0}-a \cdot b$
- $\quad=a^{\mu} b_{\mu}, a_{\mu} b^{\mu}, g_{\mu v} a^{\mu} b^{v}$, etc.
- Explicitly in terms of two -4momentum vectors:
- $p_{1} \cdot p_{2}=p_{1}{ }^{0} p_{2}{ }^{0}-p_{1}{ }^{1} p_{2}{ }^{1}-p_{1}{ }^{2} p_{2}{ }^{2}-p_{1}^{3} p_{2}^{3}=E_{1} E_{2} / c^{2}-p_{1} \cdot p_{2}$
- the dot product of a four momentum with itself:
- $p_{1} \cdot p_{1}=p_{1}^{2}=\left(E_{1} / c\right)^{2}-p_{1}^{2}=\ldots$.
- Invariants:
- are the same in all reference frames
- reduces multicomponent equation to scalar quantities
- they may save you from having to explicitly evaluate by choosing a reference frame/coordinate frame
- If massless particles are involved, it will eliminate terms

REFERENCE FRAMES:

- We will typically operate in two kinds of reference frames:
- Centre-Of-Momentum
- sum of momentum is zero

$$
\sum_{i} \vec{p}_{I}^{i}=0
$$

- decay of particle at rest, colliding beams

- Lab frame: scattering with one particle at rest

SETTING UP THE KINEMATICS

$$
\begin{aligned}
p_{A} & =p_{B}+p_{C} \\
p_{A}^{2} & =\left(p_{B}+p_{C}\right)^{2} \\
& =p_{B}^{2}+p_{C}^{2}+2 p_{A} \cdot p_{B}
\end{aligned}
$$

$$
\begin{aligned}
& p_{A}+p_{B}=p_{C}+p_{D} \\
& \left(p_{A}+p_{B}\right)^{2}=\left(p_{C}+p_{D}\right)^{2} \\
& m_{A}^{2}+m_{B}^{2}+2 p_{A} \cdot p_{B}=m_{C}^{2}+m_{D}^{2}+2 p_{C} \cdot p_{D}
\end{aligned}
$$

$m_{A}^{2} c^{2}=m_{B}^{2} c^{2}+m_{C}^{2} c^{2}+2 p_{A} \cdot p_{B}$

$$
p_{A}+p_{B}=p_{C}+p_{D}
$$

$$
p_{A}+p_{B}-p_{C}=p_{D}
$$

$$
\left(p_{A}+p_{B}-p_{C}\right)^{2}=p_{D}^{2}
$$

$$
m_{A}^{2} c^{2}+m_{B}^{2} c^{2}+m_{C}^{2} c^{2}+2 p_{A} \cdot p_{B}-2 p_{A} \cdot p_{C}-2 p_{B} \cdot p_{C}=m_{D}^{2} c^{2}
$$

LABORATORY-FRAME SCATTERING

- Consider the process $A+B \rightarrow C$ where B is at rest.
- What energy of A required to produce C ?
- Assign labels: $A \rightarrow p_{A}, B \rightarrow p_{B}, C \rightarrow p_{C}$
- Conservation of 4-momentum:
$p_{A}+p_{B}=p_{C}$
- Square the equation:

$$
\begin{aligned}
\left(p_{A}+p_{B}\right)^{2}=p_{C}^{2} \quad & p_{A}^{2}+p_{B}^{2}+2\left(p_{A} \cdot p_{B}\right)=p_{C}^{2} \\
& m_{A}^{2} c^{2}+m_{B}^{2} c^{2}+2\left(p_{A} \cdot p_{B}\right)=m_{C}^{2} c^{2}
\end{aligned}
$$

- Now in the lab frame:

$$
\begin{aligned}
& p_{A}=\left(E_{A} / c, \mathbf{p}_{A}\right) \\
& p_{B}=\left(m_{B} c, \mathbf{0}\right)
\end{aligned} \quad p_{A} \cdot p_{B}=E_{A} m_{B}
$$

$$
E_{A}=\frac{m_{C}^{2} c^{2}-m_{A}^{2} c^{2}-m_{B}^{2} c^{2}}{2 m_{B}}
$$

APPLICATION:

- What minimum energy is required for the reaction:

$$
p+p \rightarrow p+p+p+\bar{p}
$$

- with one of the initial protons at rest to proceed?
- in the lab frame, it is complicated since the outgoing products must be in motion to conserve momentum
- in the CM frame, however, the minimum energy configuration is where the outgoing products are at rest.
- (kinematically equivalent $A+B \rightarrow C, C=$ a single particle of mass $4 m_{p}$)

$$
E_{1}=\frac{m_{3}^{2} c^{2}-m_{1}^{2} c^{2}-m_{2}^{2} c^{2}}{2 m_{2}}
$$

- set $m_{3}=4 m_{p}, m_{1}, m_{2}=m_{p}$
- $E_{1}=7 m_{p} c^{2}$
- Note "conservation" vs. "invariance"

COMPTON SCATTERING:

- Consider the process $\gamma+\mathrm{e} \rightarrow \gamma+\mathrm{e}$ where the electron is initially at rest.
- If the γ scatters by an angle θ, what is it's outgoing energy?
- Assign labels:
- $p_{1}=$ incoming photon, $p_{2}=$ initial electron
- $p_{3}=$ outgoing photon, $p_{4}=$ outgoing electron
- Conservation of 4 -momentum:

$$
p_{1}+p_{2}=p_{3}+p_{4} \quad p_{1}+p_{2}-p_{3}=p_{4}
$$

- Square the equation:

$$
\begin{aligned}
\left(p_{1}+p_{2}-p_{3}\right)^{2}=p_{4}^{2} \quad & p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+2\left(p_{1} \cdot p_{2}-p_{1} \cdot p_{3}-p_{2} \cdot p_{3}\right)=p_{4}^{2} \\
& m_{e}^{2} c^{2}+2\left(p_{1} \cdot p_{2}-p_{1} \cdot p_{3}-p_{2} \cdot p_{3}\right)=m_{e}^{2} c^{2}
\end{aligned}
$$

- Now in the lab frame:

$$
\begin{array}{ll}
p_{1}=\left(E_{1} / c, \mathbf{p}_{1}\right) & p_{1} \cdot p_{2}=E_{1} m_{e} \\
p_{2}=\left(m_{e} c, \mathbf{0}\right) & p_{1} \cdot p_{3}=E_{1} E_{3} / c^{2}-\mathbf{p}_{1} \cdot \mathbf{p}_{3}=E_{1} E_{3}(1-\cos \theta) / c^{2} \\
p_{3}=\left(E_{3} / c, \mathbf{p}_{3}\right) & p_{2} \cdot p_{3}=E_{3} m_{e}
\end{array}
$$

TIPS/HINTS

- Start by setting up 4-momentum conservation equation
- Typically, it will be helpful to square the expression at some point
- reduce from 4 equations to one
- note that squared 4 -momentum is the mass of the particle!
- move expressions around based on what quantity you are after and specifics of reference frame (which particle(s) are at rest, etc0.
- Be sure to keep track of what is
- 4-momentum
- 3-momentum
- energy
- critical to "internalize" this as quickly as possible. . . common stumbling block
- Make use of invariants if possible
- quantities which are independent of reference frame

S UM MARY

- Review of special relativity postulates
- Introduce 4-vectors:
- time + spatial coordinates
- energy + momentum
- Index notation to represent "tensor" algebra
- summation convention
- formation of invariant quantities
- Kinematics using 4-momentum
- 4-momentum conservation
- use of invariant quantities
- Frames: centre-of-momentum vs. laboratory

FOR NEXT TIME:

- Please read Chapter 2.3

