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R E V I E W
• gauge invariance: 

• global vs local 

• consequences of local gauge symmetry 

• “abelian” vs. non-abelian 

• Weak interactions:  

• Chirality 

• helicity suppression 

• Flavor change 

• CKM matrix, PMNS matrix 

• GIM mechanism/suppression 

• Electroweak mixing 

• θw



• Extra office hours next week?



M O R E  E L E C T R O W E A K  T E S T S
• sin2 θW = 0.23146±0.00012 

• Branching fractions of the Z (last time)  

• Neutral current scattering 

• Left/right asymmetries in e++ e- → f + f: 

• chiral dependence of coupling 

• Mass of W and Z
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L A G R A N G I A N  M E C H A N I C S
• Describe a system with coordinates and its time derivatives: 

• Equations of motion are obtained by minimizing the action 

• resulting in Euler-Largange equations 

• For a point particle in a potential with Cartesian coordinates:
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F O R  “ F I E L D S : ”
• Fields become the “coordinate” with space time as the “dynamical variable” 

• q(t) → 𝜙(x) 

•   

• The action is now defined as: 

• Euler-Lagrange Equatoins:
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• Examples of Lagrangians and their equations of motion 
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L O C A L  G A U G E  I N VA R I A N C E
• We can recast our previous discussion about local gauge invariance in 

the Lagrangian framework 

• Example: consider the Dirac Lagrangian with local gauge 
transformation 

• As before,  need to add a new field and interaction 

• Another way to summarize this is to convert the derivative to a 
“covariant derivative”

LD = i ̄�µ@µ �m ̄ = 0  ! eiq✓(x)  

L ! L� q  ̄�µ (@µ✓)  

Aµ ! Aµ � @µ✓
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@µ ! eiq✓@µ + iq @µ✓ e
iq✓ @µ 



• We can also extend to a “non-abelian” gauge symmetry: 

• where as before we need to add another term and fields:  

• and the mass term is once again forbidden 

• the gauge invariance can be restored by:

A  F E W  E N H A N C E M E N T S
• As it stands, the A field is static 

• We can give it “life” by adding a kinematic term 

• but recalling the transformation: 

• we find that the last term (the mass) is not gauge-invariant
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• We now turn to this 
“stumbling block”
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A b s t r a c t :  Weak and electromagnetic interactions of the leptons are examined under the hypoth- 
esis t h a t  the  weak interactions are mediated b y  vector bosons. W i t h  only an isotopic triplet 
of leptons coupled to a t r iplet  of vector  bosons (two charged decay-intermediaries and the 
photon) the ±heory possesses no partial-symmetries.  Such symmetr ies  may be established if 
additionM vector  bosons or addit ional  leptons are introduced. Since the latter possibility 
yields a theory disagreeing with experiment, the  simplest partialIy-symmetric model repro- 
ducing the  observed electromagnetic and weak interactions of leptons reqnires the existence 
of at  least four vector-boson fields (including the photon).  Corresponding partially-conserved 
quanti t ies suggest leptonic analogues to the conserved quanti t ies associated with strong inter- 
actions: strangeness and isobaric sp in .  

1. In troduct ion  

At first sight there  may be little or no similarity between electromagnetic 
effects and the phenomena associated with weak interactions. Yet certain 
remarkable parallels emerge with the supposition that  the weak interactions 
are mediated by  unstable bosons. Both interactions are universal, for only a 
single coupling constant  suffices to describe a wide class of phenomena: both 
interactions are generated by vectorial Yukawa couplings of spin-one fields t*. 
Schwinger first suggested the existence of an "isotopic" triplet of vector fields 
whose universal couplings would generate both the weak interactions and 
e lec t romagne t i sm-- the  two oppositely charged fields mediate weak interac- 
tions and the neutral  field is light 2). A certain ambiguity beclouds the self- 
interactions among the three vector bosons; these can equivalently be inter- 
preted as weak or electromagnetic couplings. The more recent accumulation of 
experimental evidence supporting the AI  = ½ rule characterizing the non- 
leptonic decay modes of strange particles indicates a need for at least one 
additional neutral  intermediary a). 

The mass of the charged intermediaries must be greater than the K-meson 
mass, but  the photon mass is zero--surelythis is thepr incipals tumblingblock 
in any  pursuit of the  analogy between hypothetical vector mesons and photons. 
It  is a stumbling block we must  overlook. To say that  the decay intermediaries 

t National Science Founda t ion  Post-Doctoral  Fellow. Present  Address: Physics Department, 
California Ins t i tu te  of Technology, Pasadena.  

t t  A scalar in termediary  is also conceivable. See ref. 1). 
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O N E  M O R E  D I L E M M A
• Consider the Dirac mass term: 

• mass terms result from the coupling of left and right chiral states of a particle 

• violates gauge symmetry in the SU(2)LxU(1)Y model of weak interactions 

• direct fermion mass terms (quarks, leptons) are also forbidden.

m ̄ 

=  ̄L L +  ̄L R +  ̄R L +  ̄R R

=  ̄L R +  ̄R L



M O R E  O N  T H E  M A S S  T E R M

• mass terms are quadratic in the field 

• i.e. if a field has quadratic term in the Lagrangian, it behaves as the mass 
for that field
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“ VA C U U M  E X P E C TAT I O N  VA L U E ”
• Consider the Lagrangian 

• Note that 𝜙=0 is not a stable configuration 

• the vacuum (e.g. lowest energy state) actually happens when 𝜙 has some 
non-zero value 

• “vacuum expectation value” (VEV) 

• Perturbation theory must start from a stable vacuum in order to work 

• choose a vacuum state 

• “spontaneous symmetry” breaking
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C O N T I N U O U S  S Y M M E T RY
• Consider a complex scalar Lagrangian: 

• Instead of two potential vacuum configurations, we now have 
an infinite number of connected states 

• Expand about a vacuum point 

• let’s also make it locally gauge invariant by introducing the 
“covariant derivative” 

• that means we get a gauge boson along for the ride
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B R E A K  T H E  S Y M M E T RY

• choose a vacuum point: 

• and reparametrize the fields as: 

• and rewrite the Lagrangian focussing on the kinetic part
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H O W  D I D  T H I S  H A P P E N :
• Recall that our gauge invariant Lagrangian 

• has a term  

• Normally, 𝜙 is just a normal field 

• but the potential gives it a vacuum expectation (e.g. non-zero) 
base value that turns this into a mass term for A 

• we chose a particular vacuum configuration but the result is 
independent of our choice 

• the symmetry isn’t “really” broken, just hidden by our choice

(@µ � iqAµ)�
⇤(@µ + iqAµ)�

q2AµA
µ�⇤�



N E X T  T I M E :
• Please read Chapters 17.4-17.7


