PHYSICS 489/1489: LECTURE 19

LAGRANGIANS AND SPONTANEOUS
SYMMETRY BREAKING



REVIEW

®* gauge Invariance:
e global vs local
* consequences of local gauge symmetry
e "abelian” vs. non-abelian
* Weak interactions:
e Chirality
e helicity suppression

e Flavor change
o CKM matrix, PMNS matrix

* GIM mechanism/suppression

* Electroweak mixing
s 0,



e Extra office hours next week?



MORE ELECTROWEAK TESTS

sin2 By = 0.23146+0.00012

Branching fractions of the Z (last time)

Neutral current scattering

Left/right asymmetries in e*

* chiral dependence of coupling

Mass of W and Z
e f

e — 1




LAGRANGIAN MECHANICS

e Describe a system with coordinates and its time derivatives:
L=L(g,q)=T-U
e Equations of motion are obtained by minimizing the action

S:/ﬁu%%>

* resulting in Euler-Largange equations d oLy _ oL _ 0
dt (9qz aqi

* For a point particle in a potential with Cartesian coordinates:

| d oU oU
- Oz v oy 0z



FOR “FIELDS:”

* Fields become the “coordinate” with space time as the “dynamical variable”

* qg(t) = ¢(x)
. L= L(6(2),0,6(x)) L — / Bz L(6,0,0)

e The action is now defined as: /dtL — /dt/d?’az L(¢,0,0) = /d4x L(¢,0,0)

* Euler-Lagrange Equatoins:
d (0L B oL 0 9 ( oL ) B 3_[3
dt \ 9q; dq; "\000.9)) 09

* Examples of Lagrangians and their equations of motion

Lia = 5(0,0)(0"0) — 5m*¢? 0u0" +m?6 = 0
Lp = itpy" 0, — maph = 0 oy —myp =0
Lp= 1_(5—;(8%4” — VAN (D, A, — B,A,) + 8%m2A”A,, 0, (0" A” — 9" A") + m2A” =0



LOCAL GAUGE INVARIANCE

e We can recast our previous discussion about local gauge invariance in
the Lagrangian framework

e Example: consider the Dirac Lagrangian with local gauge
transformation

Lp = i)y Dyt — mipgp = 0 Y — )
O, — eiqeﬁuw +1q 0,0 et O
L—L—qipy" (0.0) ¢

e As before, needto add a new field and interaction

L— L—qpy*i A, A, — A, — 09,0

* Another way to summarize this is to convert the derivative to a
“covariant derivative”

0, — D, =0, +1qA,



A FEW ENHANCEMENTS

* As it stands, the A field is static
e \We can give it “life” by adding a kinematic term

L = iy Dyt — qy" ) Ay~ (A — 0 AN (DA, — D, A,) + AV A,
* but recalling the transformation: 4, — 4, — 9,6

* we find that the last term (the mass) is not gauge-invariant

* We can also extend to a “non-abelian” gauge symmetry:

h — €972y = Sy Optp — 9u(S) = S(0u%) + (8.5
o where as before we need to add another term and fields:
L = ihy"d,1p — mapi —q(Ypy 7Y) - A, A/’j — Aﬁ — Opak — gfijr a; A,

e and the mass term is once again forbidden

* the gauge invariance can be restored by: 9, — D,, = 0,, +1igT7 - A,



PARTIAL-SYMMETRIES OF WEAK INTERACTIONS
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Abstract: Weak and electromagnetic interactions of the leptons are examined under the hypoth-
esis that the weak interactions are mediated by vector bosons. With only an isotopic triplet
of leptons coupled to a triplet of vector hosons (two charged decay-intermediaries and the
photon) the theory possesses no partial-symmetries. Such symmetries may be established if
additional vector basons or additional leptons are introduced. Since the latter possibility
yields a theory disagreeing with experiment, the simplest partially-symmetric model repro-
ducing the observed clectromagnetic and weak interactions of leptons requires the existence
of at least four vector-boson fields (including the photon}. Corresponding partially-conserved
quantities suggest leptonic analogues to the conserved quantities asscciated with strong inter-
actions: strangeness and isobaric spin.

1. Introduction

At first sight there may be little or no similarity between electromagnetic
effects and the phenomena associated with weak interactions. Yet certain

remarkable parallels emerge with the supposition that the weak imteractions
are mediated by unstable bosons. Both interactions are universal, for only a
single coupling constant suffices to describe a wide class of phenomena: both
interactions are generated by wvectorial Yukawa couplings of spin-one fields 11,
Schwinger first suggested the existence of an “isotopic”™ triplet of vector fields
whose universal couplings would generate both the weak interactions and
electromagnetism — the two oppositely charged fields mediate weak interac-
tions and the neutral field is light ?). A certain ambiguity beclouds the self-
interactions among the three vector bosons; these can equivalently be inter-
preted as weak or electromagnetic couplings. The more recent accumulation of
experimental evidence supporting the AI = % rule characterizing the non-
leptonic decay modes of strange particles indicates a need for at least one
additional neutral intermediary 3).

The mass of the charged intermediaries must be greater than the K-meson
mass, but the photon mass is zero -— surely thisis the principal stumbling block
in any pursuit of the analogy between hypothetical vector mesons and photons.
It is a stumbling block we must overlook. To say that the decay intermediaries

e We now turn to this
"stumbling block”



ONE MORE DILEMMA

Consider the Dirac mass term: m&w
— 2ZLwL + ZLLZﬁR 4+ QZRQ/DL 4 ZZRwR
— %L@DR—F?ZR??DL

mass terms result from the coupling of left and right chiral states of a particle
violates gauge symmetry in the SU(2) . xU(1)y model of weak interactions

direct fermion mass terms (quarks, leptons) are also tforbidden.



MORE ON THE MASS TERM

Lia = 5(0,0)(0"6) — 57

Lp = ipy*d,1) — mipp = 0

1 1
— (AN AV _ AV AM _ = 2 4V
Lp o (OFAY — 9" AM) (0, A, — B, A,) + o AV A,
1
_ pv
167 o b

° mass terms are quadratic in the field

* j.e.if atfield has quadratic term in the Lagrangian, it behaves as the mass
for that tield



“"VACUUM EXPECTATION VALUE"

e Consider the Lagrangian g prTTTTTTT

1 1 \ A 14

L= (0u9)(0"0) + 570" — 55

— X

* Note that ¢=0 is not a stable configuration
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e the vacuum (e.g. lowest energy state) actually happens when ¢ has some
non-zero value

e “vacuum expectation value” (VEV)
e Perturbation theory must start from a stable vacuum in order to work

e choose a vacuum state

e “spontaneous symmetry” breaking



e Consider a complex scalar Lagrangian:

1 § 1 § AL
L= -(0,0")(0"p) + = p2¢*p — = (9" 0)°
2 2 4
¢ = @1 + 192
* Instead of two potential vacuum contigurations, we now have
an infinite number of connected states 8| = Lt
e Expand about a vacuum point D)

e |et's also make it locally gauge invariant by introducing the
“covariant derivative”

* that means we get a gauge boson along for the ride
a’u — D,u — ﬁu —|—2un
1 1 1

A
L= 50— iqA)d" (9" +iqA")p + SpP¢* o — T(97¢)? — {5 FurF"”



BREAK THE SYMMETRY

A
L= 1(% —iqAu) T (0" +igAr)g + 2676 - 7(670)7 —m%FWFW

2 2
* choose a vacuum point: ¢, = %

* and reparametrize the fields as:
n=¢1— % X = ¢2
e and rewrite the Lagrangian focussing on the kinetic part
(Op — iqAL)¢" (9" +1iqA")¢
= @] ig A +[5| - 0] [ +iaa")(n -

| ix)}

> | =

() a

this is a mass term for the vector particle ma = 2 /e

A



HOW DID THIS HAPPEN:

e Recall that our gauge invariant Lagrangian

(O — 1qAL) 9™ (0% +iqAY) ¢

* has aterm quuA“¢*¢

* Normally, ¢ is just a normal field

* but the potential gives it a vacuum expectation (e.g. non-zero)
base value that turns this into a mass term for A

* we chose a particular vacuum configuration but the result is
independent of our choice

* the symmetry isn't “really” broken, just hidden by our choice



NEXT TIME:
e Please read Chapters 17.4-17.7



