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H O W  D I D  I T  H A P P E N ?
• First, we considered the chiral states of each particle separately 

• We considered a SU(2) gauge theory that couples only to left chiral particles 

• This gave us W± (weak CC interaction) plus another “neutral current” interaction W3 

• we know this can’t be the photon (nor the Z) 

• Introduced a new gauge field B with U(1)Y gauge symmetry (like EM) but where we 
can assign different “hypercharge” Y to each chiral state 

• postulate a SU(2)LxU(1)Y gauge symmetry 

• Postulate that the A, Z are linear combinations of W3 and B  

• See what we have to do to: 

• get equal left/right chiral coupling to A (consistent with EM) 

• get appropriate electrons charges (-1 for electron, 0 for neutrino) 

• Sets relations between the coupling constants and hypercharge of each state. 

• completely determines the properties of Z interactions with quarks, leptons

e ! eL, eR ⌫ ! ⌫L, ⌫R

e = g sin ✓W = g0 cos ✓W = gZ cos ✓W sin ✓W



S T E P P I N G  B A C K
• We take: 

• a SU(2)L gauge group coupling only to left chiral fermions (W) 

• a U(1)Y gauge group with different couplings to left and right chiral 
fields (B) 

• came together to form: 

• weak charged currents with only left chiral couplings 

• a neutral current with equal left/right coupling 

• a neutral current with imbalanced left/right coupling 

• a single parameter θW relates coupling constant and other parameters 
to electromagnetic coupling constant. 

• We already studied the first two 

• Let’s explore the third a bit more



• Sometimes called “electroweak unification” 

• some people don’t like this 

• usually means embedding two interactions 
into a larger gauge group with one coupling 
constant 

• “electroweak mixing” may be a better term 

• But the consequences are profound 

• electromagnetic and weak interactions are 
inextricably linked by the fact that the photon 
and Z are chimeras contains bits of: 

• SU(2)L gauge group that governs the weak 
charge current 

• U(1)Y gauge group that also has right chiral 
couplings. 

• The Z boson contains obvious hints of this 
mix 

• right chiral couplings 

• modified coupling constant 

• dependence of properties on electric charge 

• (different mass from W)

18". I Nuclear Physics 22 (1961) 579--588; (~) North-Holland Publishing Co., Amsterdam 
Not to be reproduced by photoprlnt or microfilm without written permission from the publisher 

P A R T I A L - S Y M M E T R I E S  OF W E A K  I N T E R A C T I O N S  

SHELDON L. GLASHOW ¢ 
Institute/or Theoretical Physics, University o/ Copenhagen, Copenhagen, Denmarh 

Received 9 September 1960 

A b s t r a c t :  Weak and electromagnetic interactions of the leptons are examined under the hypoth- 
esis t h a t  the  weak interactions are mediated b y  vector bosons. W i t h  only an isotopic triplet 
of leptons coupled to a t r iplet  of vector  bosons (two charged decay-intermediaries and the 
photon) the ±heory possesses no partial-symmetries.  Such symmetr ies  may be established if 
additionM vector  bosons or addit ional  leptons are introduced. Since the latter possibility 
yields a theory disagreeing with experiment, the  simplest partialIy-symmetric model repro- 
ducing the  observed electromagnetic and weak interactions of leptons reqnires the existence 
of at  least four vector-boson fields (including the photon).  Corresponding partially-conserved 
quanti t ies suggest leptonic analogues to the conserved quanti t ies associated with strong inter- 
actions: strangeness and isobaric sp in .  

1. In troduct ion  

At first sight there  may be little or no similarity between electromagnetic 
effects and the phenomena associated with weak interactions. Yet certain 
remarkable parallels emerge with the supposition that  the weak interactions 
are mediated by  unstable bosons. Both interactions are universal, for only a 
single coupling constant  suffices to describe a wide class of phenomena: both 
interactions are generated by vectorial Yukawa couplings of spin-one fields t*. 
Schwinger first suggested the existence of an "isotopic" triplet of vector fields 
whose universal couplings would generate both the weak interactions and 
e lec t romagne t i sm-- the  two oppositely charged fields mediate weak interac- 
tions and the neutral  field is light 2). A certain ambiguity beclouds the self- 
interactions among the three vector bosons; these can equivalently be inter- 
preted as weak or electromagnetic couplings. The more recent accumulation of 
experimental evidence supporting the AI  = ½ rule characterizing the non- 
leptonic decay modes of strange particles indicates a need for at least one 
additional neutral  intermediary a). 

The mass of the charged intermediaries must be greater than the K-meson 
mass, but  the photon mass is zero--surelythis is thepr incipals tumblingblock 
in any  pursuit of the  analogy between hypothetical vector mesons and photons. 
It  is a stumbling block we must  overlook. To say that  the decay intermediaries 

t National Science Founda t ion  Post-Doctoral  Fellow. Present  Address: Physics Department, 
California Ins t i tu te  of Technology, Pasadena.  

t t  A scalar in termediary  is also conceivable. See ref. 1). 
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Z  C O U P L I N G S
• the Z couplings resulted from 

• Recovering the EM interaction as we know it introduced 
relations between the coupling constants and Y 

• For the neutrino: 

• which we can translate into a vertex factor 

• in this case the coupling is pure left chiral
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G E N E R A L LY:
• We got the following: 

• for the left coupling we have: 

• In general we can write the Z vertex in terms of: 

• left/right chiral couplings 

• vector/axial vector couplings:
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• for the right coupling we have:
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G A U G E  B O S O N  F E Y N M A N  R U L E S
• The Feynman rule for an incoming(outgoing) 

boson is its polarization vector: 

• εµ, εµ*

W

νe 3

e 2

1
✏µ(p3)

✏+µ =
1p
2
(0, 1, i, 0)

• Relative to the z-axis, we can define
• for the rest of the amplitude, we know (in the massless limit): 

• e, νe come out with energy MW/2 

• e with left helicity, νe with right helicity 

• We evaluated this combination back in QED
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H E L I C I T Y  C O M B I N AT I O N S
• Now we can consider any combinations of helicities by 

placing the appropriate spinors in the expression 

• We will consider products like
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j μ
• The  “↑↓” or “RL” combination
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Z  D E C AY S :

• As usual, we will consider helicity/chiral states in the massless limit. 

• Using the relation 

• we can show: 

• so that we need only consider 

• to consider this in terms of cL and cR 

• so that

Z 1
f 3

f 2

M =
gZ
2
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Z  D E C AY S  C O N T I N U E D
• Use the previously calculated helicity combinations: 

• where E = mZ/2  

• contract this with our Z polarization vectors 

• to get six  Z polarization/outgoing helicity combinations 

• stick this with the other factors
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F I N A L  S T E P S :
• We can square all the matrix elements and add them 

together to get the spin-summed amplitude 

• Divide by the initial polarization states to average 

• Putting it into our decay phase space formula 
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M E A U R E M E N T S  AT  L E P

C V C A C V 2+ C A 2 R E L . F R A C . M E A S .

νe, νµ, ντ 1/2 +1/2 0 . 5 0 1 . 5 0 0 . 2 0 0 . 2 0

e, µ, t + 2 sin2 θW  -1/2 -1/2 0 . 2 5 1 0 . 7 5 3 0 . 1 0 0 . 1 0

u, c, t - 4/3 sin2 θW  + 1/2 +1/2 0 . 2 8 6 1 . 7 1 6 0 . 2 3 0 . 2 3

d, s, b + 2/3 sin2 θW - 1/2 -1/2 0 . 3 7 3 3 . 3 5 7 0 . 4 6 0 . 4 7

50. Plots of cross sections and related quantities 5

σ and R in e+e− Collisions
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Figure 50.5: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)



S U M M A RY:
• Electroweak mixing makes predictions about cV, cA 

(alternatively cL, cR) couplings of the Z boson that can 
be tested 

• different particle species have different couplings 

• Please read chapters 17.1-17.3


