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A N N O U N C E M E N T S ,  E T C .
• PS2 here 

• PS3 returned hopefully this week 

• PS4 posted 

• Sorry for the delay



W E A K  N E U T R A L  C U R R E N T
• In terms of Feynman rules, the situation 

is rather simple: 

• vertex factor 

• depends on fermion species 

• propagator 

• same form as W, different mass 

• calculate as usual 

• However, there are many odd features 
about this . . . . . 

• dependence on fermion species 

• vector/axial structure 
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M I S S I O N  I M P O S S I B L E

• There are hints that EM and weak interactions have a common origin 

• similar gauge structure, universal coupling constant, etc. 

• But there are obvious and dramatic differences: 

• Structure of the vertex is different . . …  

• masses of the intermediaries . . . . . 

• Let’s deal with the first of these issues . . . .. 
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C H I R A L  S TAT E S

• Recall the chiral projection 
operators built into the vertex factor

νee

W
ū�
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• Recast this by “transferring” the chirality 
to the particle states 

• View the weak CC interaction as the 
vector interaction left-chiral states 

• Effectively view the left and right chiral 
states of a particle as different particles 

• We can also reformulate the EM 
as a vector interaction with both 
left and right chiral components 

• We note that it treats the left/
right chiral states equally
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• New notation: label spinors by particle species: ueL → eL 

• electromagnetic coupling constant “e”



W E A K  I N T E R A C T I O N S  A S  S U ( 2 )
• Recall the SU(2) gauge theory: 

• postulate invariance for a doublet of fields under SU(2) transformations 

• θ parameterizes the transformation 

• σ i are the generators for the group 

• Local gauge invariance forces the introduction of three gauge fields: 

• which implies an interaction between the gauge fields and χ 

• we remarked before that we could rewrite this as:
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T H E  W E A K  C H A R G E D  I N T E R A C T I O N
• Let’s talk about what χ is: 

• put in the pairs of particles that couple to the weak CC 

• W±, W3 couplings result in these transitions in “weak isospin space”  

• where νe has I3 = +1/2 and e has I3=-1/2 

• now have formalized how νe turns to e (and vice versa) 

• but also have a third interaction that is “neutral current” 

• νe stays a νe, e stays an e 

• is it the electromagnetic interaction? is it the weak neutral current?
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A D D I N G  A N O T H E R  G A U G E  G R O U P
• Consider another gauge interaction under U(1) 

• this has exactly the same structure as electromagnetism 

• however, consider that this is a separate interaction 

• a particle has “hypercharge” Y that defines its coupling to 
the U(1)Y gauge field which we call B: 

• and allow L/R chiral states to have different hyper charge
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• Now consider a “combined” gauge group  

• SU(2)LxU(1)Y 

• can we recover the weak/EM as a combination of W3 and B interactions?
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N E U T R I N O  A N D  E L E C T R O N

•  implied electromagnetic coupling of each field: 

• we can repeat this with the other “weak isospin doublets”
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W H AT  A B O U T  Z ?

• Interaction properties of the Z are 
completely determined completely once we 
set e (EM coupling), g (weak CC coupling)!

⌫̄L�
µ⌫L ! �g0

2
Y⌫L sin ✓W +

1

2
g cos ✓W

⌫̄R�
µ⌫R ! �g0

2
Y⌫R sin ✓W
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O T H E R  D O U B L E T S :
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W H AT  H A P P E N E D ?
• First, we considered the chiral states of each particle separately 

• We considered a SU(2) gauge theory that couples only to left chiral particles 

• This gave us W± (weak CC interaction) plus another “neutral current” interaction W3 

• we know this can’t be the photon (nor the Z) 

• Introduced a new gauge field B with U(1)Y gauge symmetry (like EM) but where we 
can assign different “hypercharge” Y to each chiral state 

• postulate a SU(2)LxU(1)Y gauge symmetry 

• Postulate that the A, Z are linear combinations of W3 and B  

• See what we have to do to: 

• get equal left/right chiral coupling to A (consistent with EM) 

• get appropriate electrons charges (-1 for electron, 0 for neutrino) 

• Sets relations between the coupling constants and hyper charge of each state. 

• completely determines the properties of Z interactions with quarks, leptons
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• Some complain that this not really 
“unification”:  

• usually means embedding two interactions 
into a larger gauge group with one coupling 
constant 

• “electroweak mixing” may be a better term 

• But the consequences are profound 

• electromagnetic and weak interactions are 
inextricably linked by the fact that the 
photon and Z are chimeras contains bits of: 

• SU(2)L gauge group that governs the weak 
charge current 

• U(1)Y gauge group that also has right chiral 
couplings. 

• The Z boson contains obvious hints this mix 

• right chiral couplings 

• modified coupling constant 

• dependence of properties on electric charge 

• (different mass from W)
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A b s t r a c t :  Weak and electromagnetic interactions of the leptons are examined under the hypoth- 
esis t h a t  the  weak interactions are mediated b y  vector bosons. W i t h  only an isotopic triplet 
of leptons coupled to a t r iplet  of vector  bosons (two charged decay-intermediaries and the 
photon) the ±heory possesses no partial-symmetries.  Such symmetr ies  may be established if 
additionM vector  bosons or addit ional  leptons are introduced. Since the latter possibility 
yields a theory disagreeing with experiment, the  simplest partialIy-symmetric model repro- 
ducing the  observed electromagnetic and weak interactions of leptons reqnires the existence 
of at  least four vector-boson fields (including the photon).  Corresponding partially-conserved 
quanti t ies suggest leptonic analogues to the conserved quanti t ies associated with strong inter- 
actions: strangeness and isobaric sp in .  

1. In troduct ion  

At first sight there  may be little or no similarity between electromagnetic 
effects and the phenomena associated with weak interactions. Yet certain 
remarkable parallels emerge with the supposition that  the weak interactions 
are mediated by  unstable bosons. Both interactions are universal, for only a 
single coupling constant  suffices to describe a wide class of phenomena: both 
interactions are generated by vectorial Yukawa couplings of spin-one fields t*. 
Schwinger first suggested the existence of an "isotopic" triplet of vector fields 
whose universal couplings would generate both the weak interactions and 
e lec t romagne t i sm-- the  two oppositely charged fields mediate weak interac- 
tions and the neutral  field is light 2). A certain ambiguity beclouds the self- 
interactions among the three vector bosons; these can equivalently be inter- 
preted as weak or electromagnetic couplings. The more recent accumulation of 
experimental evidence supporting the AI  = ½ rule characterizing the non- 
leptonic decay modes of strange particles indicates a need for at least one 
additional neutral  intermediary a). 

The mass of the charged intermediaries must be greater than the K-meson 
mass, but  the photon mass is zero--surelythis is thepr incipals tumblingblock 
in any  pursuit of the  analogy between hypothetical vector mesons and photons. 
It  is a stumbling block we must  overlook. To say that  the decay intermediaries 

t National Science Founda t ion  Post-Doctoral  Fellow. Present  Address: Physics Department, 
California Ins t i tu te  of Technology, Pasadena.  

t t  A scalar in termediary  is also conceivable. See ref. 1). 

579 



G A U G E  B O S O N  F E Y N M A N  R U L E S
• The Feynman rule for an incoming(outgoing) 

boson is its polarization vector: 
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• Relative to the z-axis, we can define
• for the rest of the amplitude, we know (in the massless limit): 

• e, νe come out with energy MW/2 

• e with left helicity, νe with right helicity 

• We evaluated this combination back in QED

M =
g

2
p
2

⇥
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S U M M A RY
• Please  

• review chapter 13  

• read chapter 15.3, 16.1-16.3


