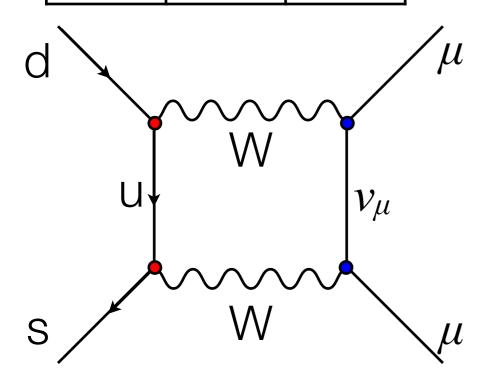
LECTURE 15: WEAK INTERACTION OF HADRONS

PHYSICS 489/1489

LAST TIME

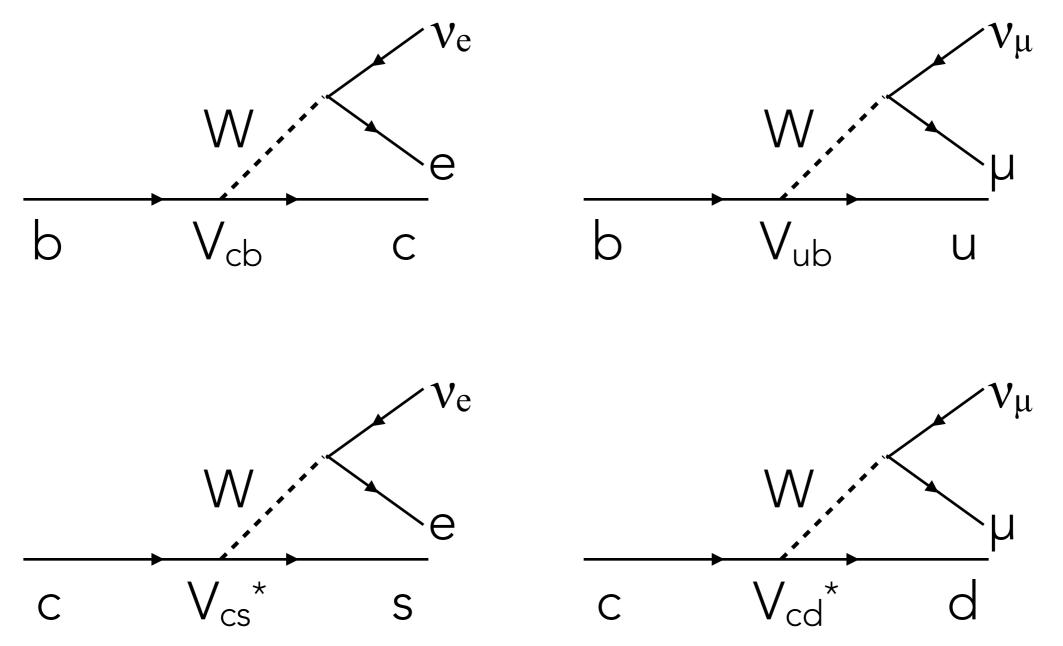

- Weird stuff about weak interactions
 - Massive gauge bosons (W, Z)
 - Helicity suppression
 - GIM suppression
 - CKM factors/suppression

TOWARDS THREE GENERATIONS

Ve	\mathcal{V}_{μ}	$\mathcal{V}_{\mathcal{T}}$
е	μ	τ

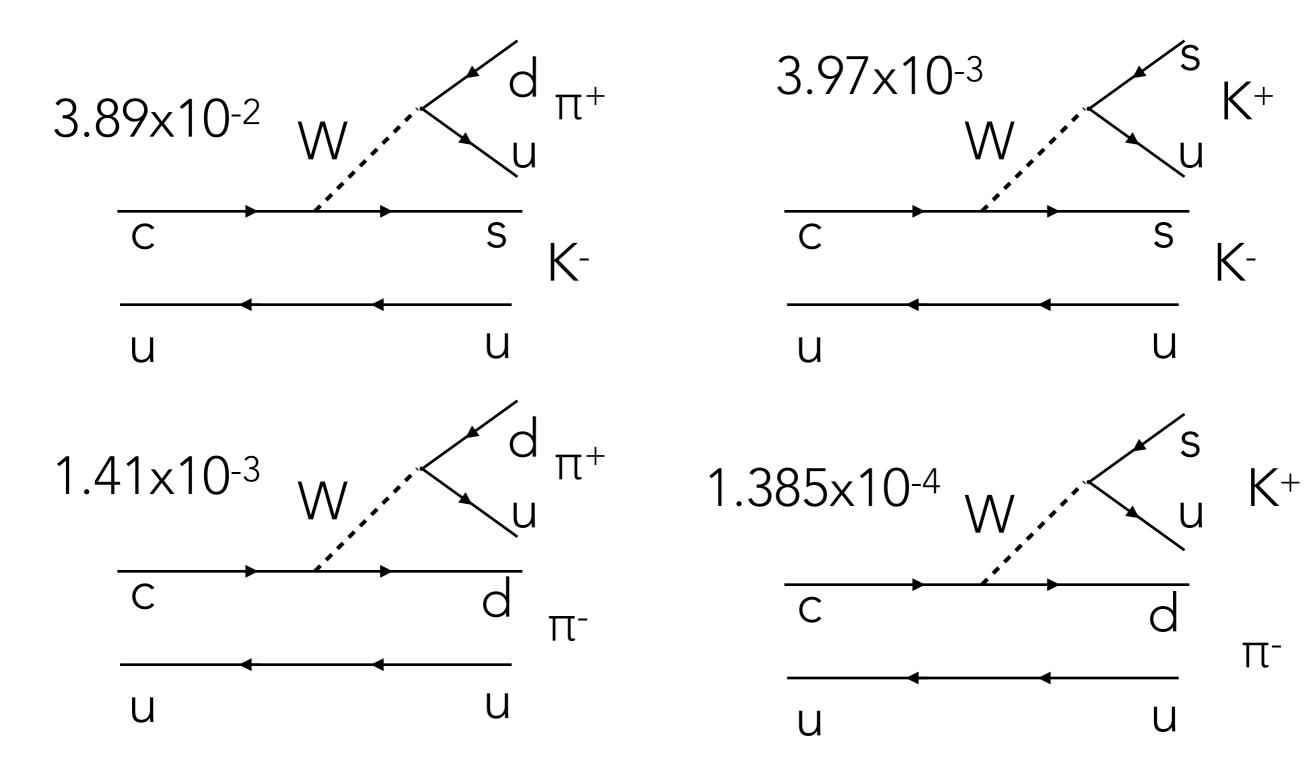
- Prior to the discovery of the Charm quark, Kobayashi and Maskawa contemplated the possibility of six quarks (three generations) in 1964
- Generalize Cabibbo angle to 3x3 matrix relating mass/flavor states

 $\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} a \\ s \\ b \end{pmatrix}$

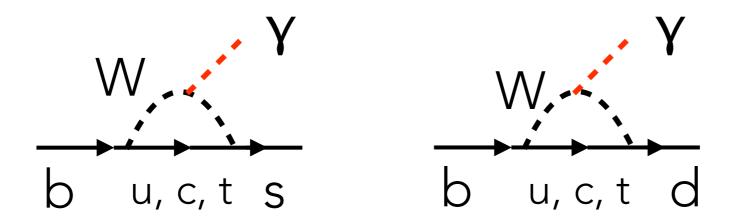

- Apply
 - factor of V_{ab}^* for $a \rightarrow b$ transition
 - factor of V_{ab} for $b \rightarrow a$ transition
 - note that antiquark transitions are complex conjugated relative to quark transitions
 - "just follow the arrows"

$$V_{ud} \frac{-ig_W}{2\sqrt{2}} \gamma^{\mu} (1 - \gamma^5) \qquad V_{us}^* \frac{-ig_W}{2\sqrt{2}} \gamma^{\nu} (1 - \gamma^5)$$

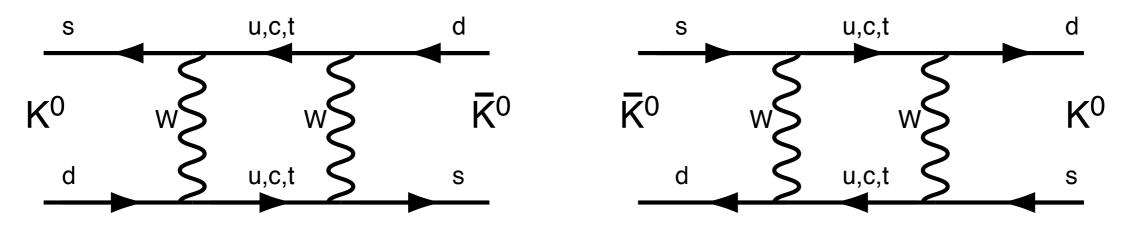
CKM MATRIX ELEMENTS


- V_{CKM} matrix elements are completely arbitrary apart from unitarity of the matrix
 - they are universal (one factor for each quark transition)
 - they need to be measured experimentally
 - why should the matrix be unitary?
- How do we measure CKM matrix elements?

SEMI-LEPTONIC DECAYS


 Note that the initial and final quark states must take the form of a "hadron": a meson or a baryon

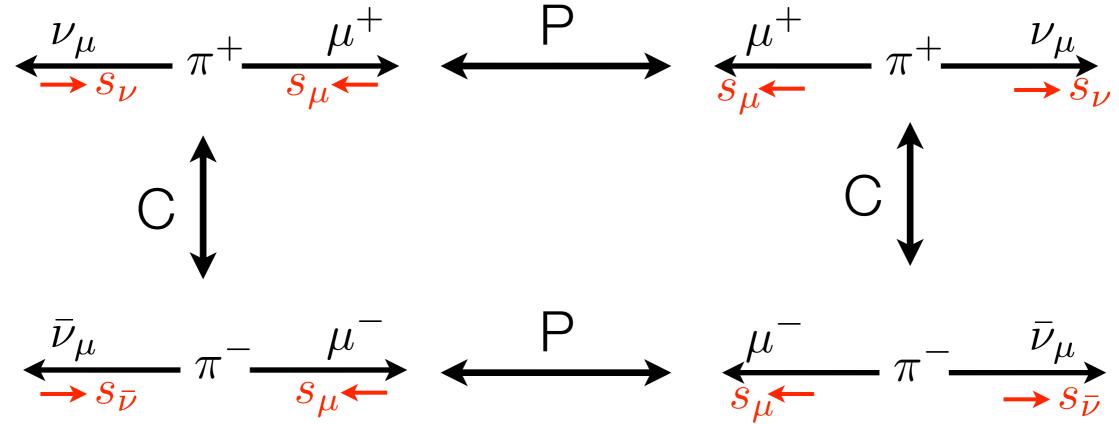
CABIBBO/CKM FAVORED/SUPPRESSED



"PENGUINS" AND "BOXES"

• Penguin diagrams:

- effective "flavor changing neutral currents"
- Box diagrams:
 - allows meson ↔ anti-meson transitions

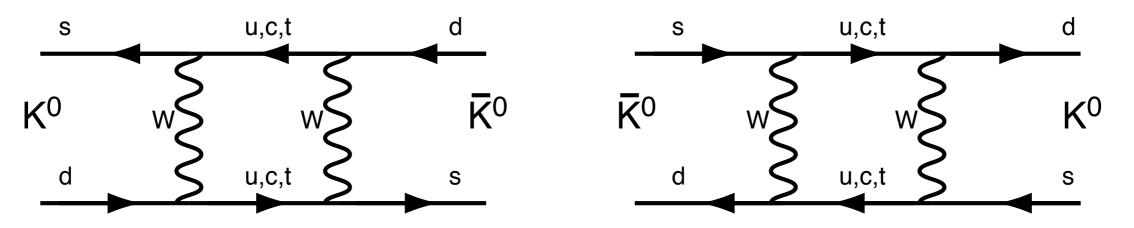


C SYMMETRY

- Charge conjugation: flips all internal quantum numbers
 - charge, color, lepton number, etc.
 - particle turns into anti-particle
 - e.g. electron \rightarrow positron, proton \rightarrow antiproton, photon \rightarrow photon
 - since charge conjugating twice gives us the same state the eigenvalue must be ±1
- Convention:
 - $C|\gamma\rangle = -|\gamma\rangle$
 - since we have the decay $\pi^0 \rightarrow \gamma + \gamma$, the means that $C|\pi^0\rangle = +|\pi^0\rangle$
 - Consequence:
 - $\pi^0 \rightarrow \gamma + \gamma + \gamma$ should not happen if C is a symmetry

CP SYMMETRY

• In studying pion decay P is violated due to the V-A coupling:


- Historically, people wanted to save some sort of space inversion symmetry so that considered "CP" symmetry
 - mirror symmetry accompanied by charge conjugation restores symmetry

THE NEUTRAL KAONS

Two types of neutral kaons product in strong interactions

$$|K^0\rangle \to |\bar{s}d\rangle \qquad |\bar{K}^0\rangle \to |s\bar{d}\rangle$$

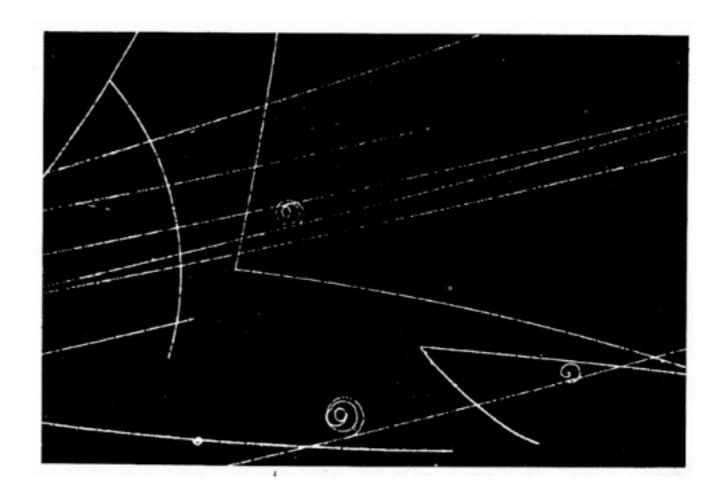
- As flavour states, we can produce them as follows $\pi^- + p \rightarrow \Lambda + K^0$ $\pi^- + p \rightarrow n + n + \bar{\Lambda} + \bar{K^0}$ $\pi^+ + p \rightarrow p + K^+ + \bar{K^0}$
- After production, they live long enough that the following "mixing" processes occur

MIXING

- Mixing means kaon produced initially as a flavour state (i.e. K^0 or $\overline{K^0}$) is no long a state of definite flavour
 - it is a linear combination of K^0 and $\overline{K^0}$
- Consider the C and P properties of these states:

Thomson's $C|K^0\rangle = -|\bar{K}^0\rangle$ $P|K^0\rangle = -|K^0\rangle$ convention $C|\bar{K}^0\rangle = -|K^0\rangle$ $P|\bar{K}^0\rangle = -|\bar{K}^0\rangle$

• Then we can construct CP eigenstates:


$$|K_1\rangle = \frac{1}{\sqrt{2}} \left[|K_0\rangle + \bar{K}_0\rangle \right] \quad CP|K_1\rangle = \frac{1}{\sqrt{2}} \left[|\bar{K}_0\rangle + K_0\rangle \right] = +|K_1\rangle$$
$$|K_2\rangle = \frac{1}{\sqrt{2}} \left[|K_0\rangle - \bar{K}_0\rangle \right] \quad CP|K_2\rangle = \frac{1}{\sqrt{2}} \left[|\bar{K}_0\rangle - K_0\rangle \right] = -|K_2\rangle$$

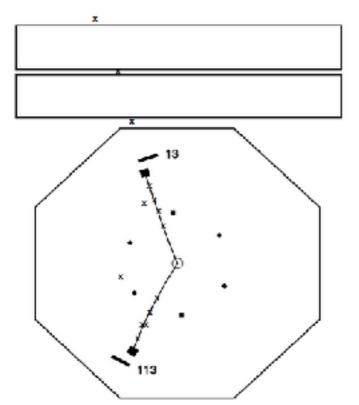
DECAY MODES

• Consider final states of two or three pions:

 $K \to \pi \pi$ $C: 1^2$ $P: (-1)^2$ $CP: +1 \times +1 = +1$ $K \to \pi \pi \pi$ $C: 1^3$ $P: (-1)^3$ $CP: +1 \times -1 = -1$

- CP symmetry means
 - K_1 can decay to $\pi\pi$ but not $\pi\pi\pi$
 - K_2 can decay to $\pi\pi\pi$ but not $\pi\pi$
- This means that K_2 has a longer lifetime than K_1
- Experimentally:
 - $t_1 = 8.95 \times 10^{-11} \text{ s}$
 - $t_2 = 5.11 \times 10^{-8} s$

CP VIOLATION IN KAON DECAY

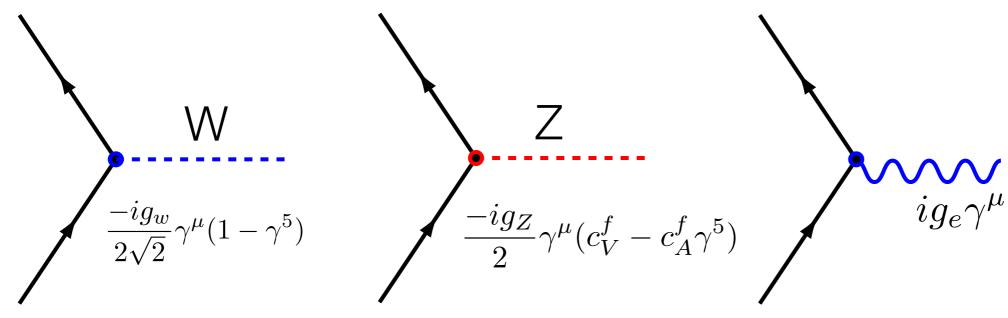

 Produce a beam of K⁰ 484 < m* < 494 10 propagate ~ 20 meters to decay K₁ ഹിഗ • all that is left is K₂ 30 Do we see any $K \rightarrow \pi\pi$ decay? EVENTS 20 Р Water Cerenkov 494 < m* < 504 Scintillator 0 NUMBER PLAN VIEW Magneti foot Collimator Spark Chamber 504<m*<514 - 10 Magnet 1.0000 0.9998 0.9999 57 Ft. to 0 Helium Bag internal larget Scintillator Water $\cos \theta$

Cerenkov

THE THIRD GENERATION

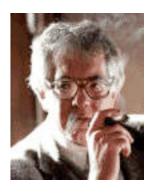
Ve	\mathcal{V}_{μ}	${\mathcal V}_{\mathcal T}$	
e	μ	τ	

U	С	t
d	S	b



- Kobayashi and Maskawa contemplated that CP violation comes from mixing
 - phase in the mixing will switch sign when considering quark vs antiquark transitions
 - Impossible to generate phase in mixing with only two generations
 - at least three are needed
- First indication came from the discovery of the τ in 1975 at SLAC
 - bottom quark discovered in 1977
 - top quark in 1994
 - v_{τ} in 2000
- Experiments (kaon, B-factories, etc.) confirm Kobayashi and Maskawa's explanation for CP violation in quarks

MISSION IMPOSSIBLE


- There are hints that EM and weak interactions have a common origin
 - similar gauge structure, universal coupling constant, etc.
- But there are obvious and dramatic differences:
 - Structure of the vertex is different

• masses of the intermediaries

$$\frac{-i(g_{\mu\nu} - q_{\mu}q_{\nu}/M_W^2 c^2)}{q^2 - M_W^2 c^2} \qquad \frac{-i(g_{\mu\nu} - q_{\mu}q_{\nu}/M_Z^2 c^2)}{q^2 - M_Z^2 c^2}$$

How to achieve "electroweak unification" . . next time

SUMMARY

- Four forms of weak decay suppression
 - overall at low energies (long lifetimes, small cross sections)
 - helicity suppression
 - Cabibbo/CK< suppression
 - GIM suppression
- Symmetry violations
 - Parity is maximally violated for weak CC interactions
 - CP is also violated

• No class next week

• Please read 15.1-15.3