PHY489/1489
LECTURE 15:
WEAK INTERACTIONS CONTINUED

ODD FEATURES OF WEAK INTERACTION

- Heavy gauge bosons
- "Chirality" associated with γ^{5}
- projects helicity states in the limit of massless particles
- revisit today
- Flavor change
- unitarity of "mixing"
- introduce today

EXAMPLE: PION DECAY

- Lepton fermion leg

$$
\left[\bar{u}_{3} \frac{-i g_{w}}{2 \sqrt{2}} \gamma^{\mu}\left(1-\gamma^{5}\right) v_{2}\right]
$$

- Quark Fermion leg

$$
\left[\bar{v}_{b} \frac{-i g_{w}}{2 \sqrt{2}} \gamma^{\nu}\left(1-\gamma^{5}\right) u_{a}\right]
$$

$$
\left[\bar{v}_{b} \frac{-i g_{w}}{2 \sqrt{2}} \gamma^{\nu}\left(1-\gamma^{5}\right) u_{a}\right] \Rightarrow F^{\nu}=f_{\pi} p^{\nu}
$$

- Propagator

$$
\begin{array}{r}
\int \frac{1}{(2 \pi)^{4}} d^{4} q \frac{i g_{\mu \nu}}{M_{W}^{2} c^{2}} \\
\mathcal{M}=\frac{g_{W}^{2}}{8 M_{W}^{2} c^{2}}\left[\bar{u}_{3} \gamma^{\mu}\left(1-\gamma^{5}\right) v_{2}\right] f_{\pi} p_{\mu}
\end{array}
$$

CARRYING OUT THE CALCULATION

$$
\begin{aligned}
& \mathcal{M}=\frac{g_{W}^{2}}{8 M_{W}^{2} c^{2}}\left[\bar{u}_{3} \gamma^{\mu}\left(1-\gamma^{5}\right) v_{2}\right] f_{\pi} p_{\mu} \\
& \bar{u}_{3} \gamma^{\mu}\left(1-\gamma^{5}\right) v_{2}
\end{aligned}
$$

- As before, we consider the various helicity combinations...
- assume decay occurs along the z -axis - but some interesting things happen

$$
\begin{gathered}
1-\gamma^{5}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)-\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right) \\
v_{\uparrow 2}=\sqrt{E}\left(\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right) \quad v_{\downarrow 2}=\sqrt{E}\left(\begin{array}{r}
0 \\
-1 \\
0 \\
-1
\end{array}\right)
\end{gathered}
$$

"Chiral" projection operator

BACK TO MATRIX ELEMENT

$$
\mathcal{M}=\frac{g_{W}^{2}}{8 M_{W}^{2} c^{2}}\left[\bar{u}_{3} \gamma^{\mu}\left(1-\gamma^{5}\right) v_{2}\right] f_{\pi} p_{\mu}
$$

$$
u_{\uparrow 3}=\sqrt{E+m}\left(\begin{array}{c}
1 \\
0 \\
\frac{p}{E+m} \\
0
\end{array}\right)
$$

- if pion is at rest, only po matters $\left(=m_{\pi}\right)$
- ignore $\mu \neq 0$

$$
\text { - } \bar{u} \gamma^{\mu}=u^{\dagger} \gamma^{0} \gamma^{\mu} \rightarrow u^{\dagger}
$$

$$
u_{\downarrow 3}=\sqrt{E+m}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-\frac{p}{E+m}
\end{array}\right)
$$

- we only need to consider $v_{\uparrow} 2$

$$
u_{\uparrow 3}^{\dagger}=\sqrt{E_{3}+m_{3}}\left(\begin{array}{llll}
1, & 0, & \frac{p}{E_{3}+m_{3}}, & 0
\end{array}\right)
$$

$$
\left(1-\gamma^{5}\right) v_{\uparrow 2}=2 \sqrt{E_{2}}\left(\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right)
$$

$$
u_{\downarrow 3}^{\dagger}=\sqrt{E_{3}+m_{3}}\left(\begin{array}{llll}
0, & 1, & 0, & -\frac{p}{E_{3}+m_{3}}
\end{array}\right)
$$

$$
\bar{u}_{3} \gamma^{\mu}\left(1-\gamma^{5}\right) f_{\pi} p_{0} \rightarrow 2 \sqrt{E_{2}} \sqrt{E_{3}+m_{3}}\left(1-\frac{p}{E_{3}+m_{3}}\right) f_{\pi} m_{\pi}
$$

$$
\mathcal{M}=\frac{g_{W}^{2}}{4 M_{W}^{2}} f_{\pi} m_{\pi} \sqrt{E_{2}\left(E_{3}+m_{3}\right)}\left(1-\frac{p}{E_{3}+m_{3}}\right)
$$

SOME KINEMATICS

$$
\mathcal{M}=\frac{g_{W}^{2}}{4 M_{W}^{2}} f_{\pi} m_{\pi} \sqrt{E_{2}\left(E_{3}+m_{3}\right)}\left(1-\frac{p}{E_{3}+m_{3}}\right)
$$

$$
\begin{aligned}
E_{3} & =\frac{m_{\pi}^{2}+m_{\ell}^{2}}{2 m_{\pi}} \\
p_{2} & =E_{2}=\frac{m_{\pi}^{2}-m_{\ell}^{2}}{2 m_{\pi}}=p_{3}
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{M}=\frac{g_{W}^{2}}{4 M_{W}^{2}} f_{\pi} m_{\ell} \sqrt{\frac{m_{\pi}^{2}-m_{\ell}^{2}}{2 m_{\pi}} \frac{m_{\pi}^{2}+m_{\ell}^{2}+2 m_{\pi} m_{\ell}}{2 m_{\pi}}}\left(\frac{2 m_{\pi}}{m_{\pi}^{2}+m_{\ell}^{2}+2 m_{\pi} m_{\ell}}\right)\left(\frac{m_{\pi}^{2}+m_{\ell}^{2}+2 m_{\pi} m_{\ell}-m_{\pi}^{2}+m_{\ell}^{2}}{2 m_{\pi}}\right) \\
\frac{1}{2 m_{\pi}}\left(m_{\pi}+m_{\ell}\right) \sqrt{m_{\pi}^{2}-m_{\ell}^{2}}
\end{gathered}
$$

$$
\mathcal{M}=\frac{m_{\ell}}{m_{\pi}^{2}} \sqrt{m_{\pi}^{2}-m_{\ell}^{2}} f_{\pi} m_{\ell} \sqrt{m_{\pi}^{2}-m_{\ell}^{2}}
$$

DECAY RATE

$$
\mathcal{M}=\frac{g_{W}^{2}}{4 M_{W}^{2}} f_{\pi} m_{\ell} \sqrt{m_{\pi}^{2}-m_{\ell}^{2}}
$$

$$
\begin{aligned}
\Gamma= & \frac{\left|\mathbf{p}^{*}\right|}{32 \pi^{2} M^{2}} \int|\mathcal{M}|^{2} d \Omega=\frac{\left|\mathbf{p}^{*}\right|}{8 \pi m_{\pi}^{2}}|\mathcal{M}|^{2} \quad p_{2}=E_{2}=\frac{m_{\pi}^{2}-m_{\ell}^{2}}{2 m_{\pi}}=p_{3} \\
& =\frac{g_{W}^{4}}{8 \pi m_{\pi}^{2} \times 16 m_{W}^{4}} f_{\pi}^{2} m_{\ell}^{2}\left(m_{\pi}^{2}-m_{\ell}^{2}\right) \frac{m_{\pi}^{2}-m_{\ell}^{2}}{2 m_{\pi}} \\
& =\frac{g_{W}^{4}}{256 \pi m_{\pi}^{3} m_{W}^{4}} f_{\pi}^{2} m_{\ell}^{2}\left(m_{\pi}^{2}-m_{\ell}^{2}\right)^{2}
\end{aligned}
$$

RATIOS:

- Consider the two decays:
- $\pi^{-} \rightarrow \mathrm{e}^{-}+\bar{v}_{e}$
- $\pi^{-} \rightarrow \mu^{-}+\bar{v}_{\mu}$

$$
\Gamma=\frac{g_{W}^{4}}{256 M_{W}^{4} m_{\pi}^{3}} f_{\pi}^{2} m_{3}^{2}\left(m_{\pi}^{2}-m_{3}^{2}\right)^{2} \quad \frac{\Gamma_{e}}{\Gamma_{\mu}}=\frac{m_{e}^{2}\left(m_{\pi}^{2}-m_{e}^{2}\right)^{2}}{m_{\mu}^{2}\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}}
$$

- Using the masses
- $m_{\pi}=139.57 \mathrm{MeV}$
- $\mathrm{m}_{\mu}=105.65 \mathrm{MeV}$

$$
\frac{\Gamma_{e}}{\Gamma_{\mu}}=1.28 \times 10^{-4}
$$

- $m_{e}=0.511 \mathrm{MeV}$
$\frac{\Gamma_{e}}{\Gamma_{\mu}}=1.2344 \pm 0.0023($ stat $) \pm 0.0019($ syst. $) \times 10^{-4}$

Improved Measurement of the $\pi \rightarrow \mathrm{e} \nu$ Branching Ratio

A. Aguilar-Arevalo, ${ }^{1}$ M. Aoki, ${ }^{2}$ M. Blecher, ${ }^{3}$ D. I. Britton, ${ }^{4}$ D. A. Bryman, ${ }^{5}$ D. vom Bruch, ${ }^{5}$ S. Chen, ${ }^{6}$ J. Comfort, ${ }^{7}$ M. Ding, ${ }^{6}$ L. Doria, ${ }^{8}$ S. Cuen-Rochin, ${ }^{5}$ P. Gumplinger, ${ }^{8}$ A. Hussein, ${ }^{9}$ Y. Igarashi, ${ }^{10}$ S. Ito, ${ }^{2}$ S. H. Kettell, ${ }^{11}$ L. Kurchaninov, ${ }^{8}$ L. S. Littenberg, ${ }^{11}$ C. Malbrunot, ${ }^{5,{ }^{,}}$R.E. Mischke, ${ }^{8}$ T. Numao, ${ }^{8}$ D. Protopopescu, ${ }^{4}$ A. Sher, ${ }^{8}$ T. Sullivan, ${ }^{5}$ D. Vavilov, ${ }^{8}$ and K. Yamada ${ }^{2}$

(PIENU Collaboration)

${ }^{1}$ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Mexico, Distrito Federal 04510 México
${ }^{2}$ Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
${ }^{3}$ Physics Department, Virginia Tech, Blacksburg, Virginia 24061, USA
${ }^{4}$ Physics Department, University of Glasgow, Glasgow G12 8QQ, United Kingdom
${ }^{5}$ Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada ${ }^{6}$ Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China
${ }^{7}$ Physics Department, Arizona State University, Tempe, Arizona 85287, USA
${ }^{8}$ TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
${ }^{9}$ University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
${ }^{10}$ KEK, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801, Japan
${ }^{11}$ Brookhaven National Laboratory, Upton, New York 11973-5000, USA (Received 8 June 2015; published 13 August 2015)
A new measurement of the branching ratio $R_{e / \mu}=\Gamma\left(\pi^{+} \rightarrow e^{+} \nu+\pi^{+} \rightarrow e^{+} \nu \gamma\right) / \Gamma\left(\pi^{+} \rightarrow \mu^{+} \nu+\pi^{+} \rightarrow \mu^{+} \nu \gamma\right)$ resulted in $R_{e / \mu}^{\text {exp }}=[1.2344 \pm 0.0023$ (stat) ± 0.0019 (syst) $] \times 10^{-4}$. This is in agreement with the standard model prediction and improves the test of electron-muon universality to the level of 0.1%.

FORM OF INTERACTION

- We said this is a "vector - axial vector" interaction

$$
\mathcal{M}=\frac{g_{W}^{2}}{8 M_{W}^{2} c^{2}}\left[\bar{u}_{3} \gamma^{\mu}\left(1-\gamma^{5}\right) v_{2}\right] f_{\pi} p_{\mu}
$$

- What would a:
- vector interaction look like?
- scalar interaction?
- The form of the interaction affects the decay rate
- if we assume a scalar interaction we would get

$$
\frac{\Gamma_{e}}{\Gamma_{\mu}}=\sim 5
$$

HELICITY SUPPRESSION

- For massless particles, chiral states are also helicity states, i.e.
- we concluded $\frac{1}{2}\left(1-\gamma^{5}\right) v_{2} \Rightarrow v_{2 \uparrow}$
- but we also concluded

$$
\bar{u}_{3} \frac{1}{2} \gamma^{\mu}\left(1-\gamma^{5}\right) \Rightarrow \bar{u}_{3} \frac{1}{2}\left(1+\gamma^{5}\right) \gamma^{\mu} \Rightarrow u_{3}^{\dagger} \gamma^{0} \frac{1}{2}\left(1+\gamma^{5}\right) \gamma^{\mu} \Rightarrow\left(\frac{1}{2}\left(1-\gamma^{5}\right) u_{3}\right)^{\dagger} \gamma^{0} \gamma^{\mu} \Rightarrow \bar{u}_{3 L} \gamma^{\mu}
$$

- i.e. antineutrino is right helicity, muon is left helicity
- impossible to conserve angular momentum so the decay will not happen!
- this is apparent also from the matrix element

$$
\mathcal{M}=\frac{g_{W}^{2} f_{\pi} m_{\pi}}{4 M_{W}^{2}} \sqrt{E_{3}+m_{3}} \sqrt{\left|\mathbf{p}_{3}\right|}\left(1-\frac{\left|\mathbf{p}_{\mathbf{3}}\right|}{E_{3}+m_{3}}\right)
$$

- The decay only happens to the extent that the chiral projection of one of the particles departs from a helicity state due to its mass.
- the closer the particles are to the massless limit, the more suppression

EXAMPLE: KAON DECAY

- Lepton fermion leg

$$
\left[\bar{u}_{3} \frac{-i g_{w}}{2 \sqrt{2}} \gamma^{\mu}\left(1-\gamma^{5}\right) v_{2}\right]
$$

- Quark Fermion leg

$$
\begin{aligned}
& {\left[\bar{v}_{b} \frac{-i g_{w}}{2 \sqrt{2}} \gamma^{\nu}\left(1-\gamma^{5}\right) u_{a}\right]} \\
& {\left[\bar{v}_{b} \frac{-i g_{w}}{2 \sqrt{2}} \gamma^{\nu}\left(1-\gamma^{5}\right) u_{a}\right] \Rightarrow F^{\nu}=f_{\pi} p^{\nu}}
\end{aligned}
$$

- Propagator

$$
\begin{array}{cl}
\mathcal{M}=\frac{g_{W}^{2}}{8 M_{W}^{2} c^{2}}\left[\bar{u}_{3} \gamma^{\mu}\left(1-\gamma^{5}\right) v_{2}\right] f_{K} p_{\mu} \quad \int \frac{1}{(2 \pi)^{4}} d^{4} q \quad \frac{i g_{\mu \nu}}{M_{W}^{2} c^{2}} \\
\mathrm{~m}_{\pi} \sim 140 \mathrm{MeV} & \frac{\Gamma_{e}}{\Gamma_{\mu}}=\frac{m_{e}^{2}\left(m_{K}^{2}-m_{e}^{2}\right)^{2}}{m_{\mu}^{2}\left(m_{K}^{2}-m_{\mu}^{2}\right)^{2}}=2.57 \times 10^{-5} \\
\mathrm{~m}_{\mathrm{K}} \sim 494 \mathrm{MeV} & \frac{\mathcal{B}\left[K \rightarrow e+\nu_{e}\right]}{\mathcal{B}\left[K \rightarrow \mu+\nu_{\mu}\right]}=\frac{1.582 \times 10^{-5}}{0.6356}=2.49 \times 10^{-5}
\end{array}
$$

WEAK CC FOR LEPTONS

- Reasonably simple
- charged lepton connects to corresponding neutrino

WEAK INTERACTION OF QUARKS

- Step back to 1960s when we "knew" of three quarks
- Noticed that decays of "strange' particles was much slower than expected
- We can compare pion/kaon decays

$$
\begin{aligned}
& \mathrm{m}_{\pi}=139.57 \mathrm{MeV} \quad \Gamma=\frac{f_{\pi}^{2}}{\pi \hbar m_{\pi}^{3}}\left(\frac{g_{w}}{4 M_{W}}\right)^{4} m_{l}^{2}\left(m_{\pi}^{2}-m_{l}^{2}\right)^{2} \\
& \mathrm{~m}_{\mathrm{K}}=493.68 \mathrm{MeV} \\
& \frac{\Gamma\left(K^{-} \rightarrow \mu^{-}+\nu_{\mu}\right)}{\Gamma\left(\pi^{-} \rightarrow \mu^{-}+\nu_{\mu}\right)}=\left(\frac{m_{\pi}}{m_{K}}\right)^{3}\left(\frac{m_{K}^{2}-m_{\mu}^{2}}{m_{\pi}^{2}-m_{\mu}^{2}}\right)^{2} \sim 18
\end{aligned}
$$

CABIBBO ANGLE

- Experiments find that this ratio is more like
 1.3, indicating that something is wrong with our picture
- Cabbibo postulated that:
- $d \leftrightarrow u$ transitions scaled by factor of $\cos \theta_{c}$
- $s \leftrightarrow u$ transitions scaled by factor of $\sin \theta_{c}$
- experimentally $\theta_{c} \sim 13^{\circ}$
- Cabibbo was able to relate a host of decay rates for strange and non-strange particles with a single parameter
- "Cabibbo favored": decays with $\cos \theta_{c}$ factor
- "Cabibbo suppressed": decays with $\sin \theta_{c}$ factor

STILL A PROBLEM

- Above process should happen as $\mathrm{K}^{0} \rightarrow \mu^{+}+\mu^{-}$
- but its branching fraction ($<10^{-8}$) is much lower than expected, even after considering Cabibbo factors

GIM MECHANISM

$A_{1} \sim \sin \theta_{C} \cos \theta_{C}$

$$
\binom{d^{\prime}}{s^{\prime}}=\left(\begin{array}{cc}
\cos \theta_{C} & \sin \theta_{C} \\
-\sin \theta_{C} & \cos \theta_{C}
\end{array}\right)\binom{d}{s}
$$

- Introduce a fourth quark
- "charm" that cancels contribution from u quark
- "Mixing"
- mass eigenstates (conventional name for quarks) are linear combination of "flavor eigenstates" as indicated above
- d^{\prime} is defined as state that couples to u via the W boson
- s^{\prime} is defined as state that couples to c via W boson

THE NOVEMBER REVOLUTION

- 1974: Discovery of the J/ ψ particle
- evidence of a bound state with a heavy quark
- Brought together many elements of what we call the standard model
- quarks, gauge theory, etc

TOWARDS THREE GENERATIONS

v_{e}	v_{μ}	v_{τ}
e	μ	τ

- Prior to the discovery of the Charm quark, Kobayashi and Maskawa contemplated the possibility of six quarks (three generations) in 1964
- Generalize Cabibbo angle to 3×3 matrix relating mass/flavor states
- Apply

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

- factor of $\mathrm{V}_{\mathrm{ab}}{ }^{\star}$ for $\mathrm{a} \rightarrow \mathrm{b}$ transition
- factor of V_{ab} for $\mathrm{b} \rightarrow$ a transition
- note that antiquark transitions are complex conjugated relative to quark transitions
- "just follow the arrows"

$$
V_{u d} \frac{-i g_{W}}{2 \sqrt{2}} \gamma^{\mu}\left(1-\gamma^{5}\right) \quad V_{u s}^{*} \frac{-i g_{W}}{2 \sqrt{2}} \gamma^{\nu}\left(1-\gamma^{5}\right)
$$

GlIM MECHANISM IN CK

$$
\begin{array}{ll}
V_{u d} \frac{-i g_{W}}{2 \sqrt{2}} \gamma^{\mu}\left(1-\gamma^{5}\right) & V_{u s}^{*} \frac{-i g_{W}}{2 \sqrt{2}} \gamma^{\nu}\left(1-\gamma^{5}\right) \\
V_{c d} \frac{-i g_{W}}{2 \sqrt{2}} \gamma^{\mu}\left(1-\gamma^{5}\right) & V_{c s}^{*} \frac{-i g_{W}}{2 \sqrt{2}} \gamma^{\nu}\left(1-\gamma^{5}\right) \\
V_{t d} \frac{-i g_{W}}{2 \sqrt{2}} \gamma^{\mu}\left(1-\gamma^{5}\right) & V_{t s}^{*} \frac{-i g_{W}}{2 \sqrt{2}} \gamma^{\nu}\left(1-\gamma^{5}\right)
\end{array}
$$

$$
V_{u d} V_{u s}^{*}+V_{c d} V_{c s}^{*}+V_{t d} V_{t s}^{*}
$$

$$
\left(\begin{array}{ccc}
V_{u d}^{*} & V_{c d}^{*} & V_{t d}^{*} \\
V_{u s}^{*} & V_{c s}^{*} & V_{t s}^{*} \\
V_{u b}^{*} & V_{c b}^{*} & V_{t b}^{*}
\end{array}\right)\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

- In general, "flavor changing neutral currents" that proceed via a loop and two CC transitions will have this suppression
- "Nature abhors flavour changing neutral currents"

$$
\left|U_{C K M}\right| \sim\left(\begin{array}{ccc}
0.9738 & 0.2272 & 0.0040 \\
0.2271 & 0.9730 & 0.0422 \\
0.0081 & 0.0416 & 0.9991
\end{array}\right)
$$

THREE SUPPRESSION MECHANISMS

- (coupling constant)
- Propagator
- Helicity Suppression
- GIM suppression
- When are they (not) in effect?

CONCLUSIONS

- Please read 12.1, 12.2, 14.1-3, 14.7

