PHY489 1489
LECTURE 12:
QUANTUM CHROMODYNAMICS

N.B.:

- We will qualitatively cover various important aspects of OCD in this lecture
- We will not do any detailed calculations, though we will show some elements of how things may go if we did....
- These key aspects of QCD are an important part of particle physics and establishing gauge theories as the basis for our description of particle physics.

NON-ABELIAN GAUGE THEORY

- Last time we considered the "SU(2) gauge theory"
- pair of Dirac fields with local gauge invariance under the group SU(2)

$$
\psi \equiv\binom{\psi_{1}}{\psi_{2}} \rightarrow e^{i \frac{g}{2} \vec{\theta} \cdot \vec{\sigma}}\binom{\psi_{1}}{\psi_{2}}
$$

- elements of the group parameterized by Pauli matrices as "generators":

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- In order to maintain local gauge invariance
- need to add an extra term:

$$
\left(i \not \partial-\frac{g}{2} \vec{\sigma} \cdot \vec{A}-m\right) \psi=0
$$

- where the A^{i} transform as follows in the gauge transformation.

$$
\vec{A}_{\mu} \rightarrow \vec{A}_{\mu}-\frac{1}{2} \partial_{\mu} \theta-\frac{g}{2} \epsilon_{i j k} \theta_{i} A_{\mu}^{j}
$$

CONSEOUENCES

- We have three new fields:

$$
\vec{A}_{\mu} \rightarrow \vec{A}_{\mu}-\frac{1}{2} \partial_{\mu} \theta-\frac{g}{2} \epsilon_{i j k} \theta_{i} A_{\mu}^{j} \quad \vec{A}_{\mu} \Rightarrow A_{\mu}^{i}
$$

- they are Lorentz vector fields (like the photon)
- last term from non-commutation of the generators (Pauli matrices)
- the fields couple to themselves
- we can give A life by introducing their own kinetic terms, etc.
- the same gauge invariance that created them requires them to be massless
- We have a new interaction term:

$$
\begin{gathered}
\left(i \not \partial-\frac{g}{2} \vec{\sigma} \cdot \vec{A}-m\right) \psi=0 \\
\frac{g}{2} \sigma_{i} \cdot A_{\mu}^{i} \gamma^{\mu} \psi
\end{gathered}
$$

- in analogy to the $U(1)$ case:

$$
(i \not \partial-q \not A-m) \psi=0
$$

$\frac{-i g_{\mu \nu}}{q^{2}}$

$\frac{-i g_{\mu \nu} \delta_{i j}}{q^{2}}$

SU(3) GAUGE SYMMETRY

- Basically the same same story:

$$
\psi \equiv\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right) \rightarrow e^{i \frac{g_{s}}{2} \cdot \vec{\alpha} \cdot \vec{T}}\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right)
$$

- where T_{a} are eight 3×3 matrices which parameterize the $\mathrm{SU}(3)$ transformation.
- Conventionally, we can use the "Gell-Mann" matrices which are the analog of the Pauli matrices in $\mathrm{SU}(3)$

$$
T_{a}=\frac{1}{2} \lambda_{a}
$$

- This time, we need to add eight fields

$$
\begin{aligned}
& \left(i \not \partial-g_{s} T^{a} \not \not^{a}-m\right) \psi=0 \\
& G^{a} \rightarrow G_{\mu}^{a}-\frac{1}{2} \partial_{\mu} \alpha^{a}-g_{s} f_{i j k} \alpha_{i} G_{\mu}^{j}
\end{aligned}
$$

"GELL-MANN" MATRICES:

- $\operatorname{SU}(3)$ has 8 real degrees of freedom
- 18 complex numbers -9 unitary relations -1 for "special"
- This basis is a convention

$$
\begin{array}{ll}
\lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) & \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right)
\end{array}
$$

$\lambda_{6}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \quad \lambda_{7}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0\end{array}\right) \quad \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right)$

QUANTUM CHROMODYNAMICS

- This is the theory of QCD as we know it
- local gauge theory under SU(3)
- eight massless "gluons": bosons introduced for local gauge invariance
- acts on triplets of Dirac fields

$$
\psi \equiv\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right) \rightarrow e^{i \frac{g_{s}}{2} \vec{\alpha} \cdot \vec{T}}\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right) \text { "red" } \begin{aligned}
& \text { "green" } \\
& \text { "blue" }
\end{aligned}
$$

- Fundamental connection between "transformation" and "interaction"
- fields that do not transform under the gauge transformation do not interact
- objects that do not transform are called "singlets" and do not participate
- quarks are "triplets" under SU(3) ("fundamental")
- leptons and other "uncolored" objects are "singlets"
- similarity of QED, QCD arise because they are both (local) gauge theories

COLOR CONFINEMENT

- "colored" objects are not observed directly in nature
- i.e. all objects we see take the form of objects with net zero color
- "color singlet states"
- in particular, bare gluons and quarks never appear to be seen
- Examples:
- mesons qव̄ objects with opposite color
- baryons: qqq objects which combine to form a zero color state
- and antibaryons
- There is no rigorous proof that this must be the case, but conceptually it can be understood in the context of the strength of the interaction.
- "pulling apart" two coloured objects leads to additional gluons being produced which then form and "neutralize" them.

"RUNNING" COUPLING CONSTANT

- We have talked about "coupling constants" in OED and OCD
- A major development was the acceptance/incorporation of the idea that these are not constants at all
- higher order diagrams result in a q^{2} dependence for a process

- contribution from all the diagrams can be summarized as a coupling "constant" a a fixed q^{2}
- for electromagnetism, this results in large coupling as q^{2} increases.
- "renormalization"

QCD

- The first higher order correction to the gluon propagator

- this results in:

$$
\alpha_{s}\left(q^{2}\right)=\frac{\alpha_{s}\left(\mu^{2}\right)}{1+B \alpha_{s}\left(\mu^{2}\right) \log \frac{q^{2}}{\mu^{2}}}
$$

$$
B=\frac{11 N_{c}-2 N_{f}}{12 \pi}
$$

- note that it depends on the number of quark flavours
- with six quarks, we find that $\mathrm{B}<0$
- coupling constant decreases with q^{2}
- Λ_{ocd} : where $\alpha_{\mathrm{s}} \sim 1$: 220 MeV

qq q PRODUCTION:

$e^{+}+e^{-} \rightarrow \mathbf{q}+\bar{q}$

- All the calculation steps are the same, except ...
- quarks do not have unit charge
- quarks can be emitted in three possible color combinations
- different quarks have different masses

CROSS SECTION

- Recall total cross section for μ pair production

$$
\sigma=\frac{\pi}{3}\left(\frac{\hbar c \alpha}{E}\right)^{2} \quad \sigma_{\mu^{+} \mu^{-}}=\frac{\pi}{3}\left(\frac{\hbar c \alpha}{E}\right)^{2} \Rightarrow \sigma_{q_{i} \bar{q}_{i}}=3 Q_{i}^{2} \times \sigma_{\mu^{+} \mu^{-}}
$$

- now take the ratio

$$
R=\frac{\sum_{i} \sigma_{q \bar{q}_{i}}}{\sigma_{\mu^{+} \mu^{-}}}=3 \times \sum Q_{i}^{2}
$$

- Which quarks can be produced depends on energy

$$
\begin{array}{ll}
\sqrt{s}<2 m_{c} \sim 3.7 \mathrm{GeV} & R=3 \times\left((2 / 3)^{2}+(1 / 3)^{2}+(1 / 3)^{2}\right)=2 \\
\sqrt{s}<2 m_{b} \Rightarrow 10.6 \mathrm{GeV} & R=3 \times\left((2 / 3)^{2}+(1 / 3)^{2}+(1 / 3)^{2}+(2 / 3)^{2}\right)=10 / 3 \\
\sqrt{s}<2 m_{t} \sim 330 \mathrm{GeV} & R=3 \times\left((2 / 3)^{2}+(1 / 3)^{2}+(1 / 3)^{2}+(2 / 3)^{2}+(1 / 3)^{2}\right)=11 / 3
\end{array}
$$

MEAUREMENTS

SUMMARY:

- QED and QCD have a common origin in local gauge theories
- QED is a $U(1)$ gauge theory, 1 gauge boson
- QCD is a SU(3) gauge theory, 8 gauge bosons
- The triplet of states associated with the $\operatorname{SU}(3)$ transformations is the "color" space
- objects must transform under $\operatorname{SU}(3)$ to feel the QCD interaction
- Confinement:
- only colorless/"singlet" states are observed
- Asymptotic Freedom:
- strength of $\operatorname{QCD}\left(\boldsymbol{\alpha}_{s}\right)$ decreases as q^{2} rises
- " Λ_{QCD} ": q^{2} region where QCD is "strong" $\left(\alpha_{\mathrm{s}} \sim 1\right)$

NEXT TIME:

- We'll move onto weak interactions
- Please read chapter 11
- Problem Set 2 due today in Box K
- Problem set 3 will be posted soon.

