PHYSICS 489/1489

LECTURE 11:SYMMETRIES

ANNOUNCEMENTS

- Problem set 2 due next Tuesday at 1700
 - Box K
- Office hours tomorrow:
 - Might be a bit late . . . hopefully back in the office by 1415.

E&M WITH CHARGED DIRAC PARTICLES

$$H_0 = \gamma^0 (\vec{\gamma} \cdot \mathbf{p} + m) \qquad V = q \gamma^0 \gamma^\mu A_\mu \qquad A^\mu = (\phi, \mathbf{A})$$

Can be derived from "minimal substitution"

 $\partial_{\mu} \Rightarrow \partial_{\mu} + iqA_{\mu} \qquad p_{\mu} \Rightarrow p_{\mu} - qA_{\mu}$

- we'll see later that this can arise from "gauge invariance"
- for now, you can see:

 $E \Rightarrow E - q\phi$ $\mathbf{p} \Rightarrow \mathbf{p} - q\mathbf{A}$

- i.e. impact from scalar/vector potential on the energy of the particle
- We can then express the interaction as follows

$$\langle \psi_f | V | \psi_i \rangle \Rightarrow u_f^{\dagger} Q \gamma^0 \gamma^{\mu} \epsilon_i u_i \Rightarrow Q \bar{u}_f \gamma^{\mu} u_1 \epsilon_{\mu}$$

from QED lecture

SYMMETRY

- An operation on something that leaves it unchanged
- Mathematically, symmetries form "groups"
 - closure: one operation followed by another is another symmetry operation
 - identity: doing nothing is a symmetry operation
 - inverse: for each operation, there is another symmetry operation that undoes it.
 - associativity: $O_1(O_2O_3) = (O_1O_2)O_3$
- Noether's theorem:
 - symmetry in a system ↔ conservation law

NOETHER'S THEOREM IN QM

We can express a symmetry operation on a state as an operator:

 $|\psi\rangle \rightarrow U|\psi\rangle \qquad |U\psi\rangle \equiv U|\psi\rangle$

- in order for the physical predictions to be unchanged by the operation, it must preserve:
 - normalization $\langle \psi | \psi \rangle \rightarrow \langle U \psi | U \psi \rangle$

 $\langle U\psi|U\psi\rangle \to \langle \psi|U^{\dagger}U\psi\rangle$

- can see that U must be unitary, i.e. $U^{\dagger}U = 1$
- eigenvalues of operators
 - particularly the Hamiltonian [H, U] = 0

CONTINUOUS GROUPS

• A continuous group is one that can be parameterized by continuous parameter(s):

$$U \to U(\theta)$$

- Examples:
 - rotations ("special" orthogonal matrices)
 - e.g. matrices where $O^T O = OO^T = 1$
 - with determinant 1
 - "SO(N)": special orthogonal matrices of dimension N
 - "special unitary" matrices:
 - unitary matrices with determinant 1
 - "SU(N)": special unitary matrices of dimension N

GENERATORS

- For a continuous group, we can consider an infinitesimal transformation (in a Taylor expansion sense) $U(\epsilon) = 1 + i\epsilon G + O(\epsilon^2) + \dots$
- The operator G is called a "generator" of the group
- The unitarity of U requires G to be Hermitian
 - G = G[†]
- The infinitesimal transformation is an element of the group

• [H, G] = 0

- Noether's theorem in quantum mechanics:
 - The observable corresponding to G is conserved

GLOBAL GAUGE SYMMETRY:

- From Electromagnetism, we have "gauge" transformations:
 - Maxwell's laws are invariant under:

 $\phi = A_0 \to A_0 - \dot{\chi} \qquad \mathbf{A} \to \mathbf{A} + \nabla \chi \qquad A_\mu \to A_\mu - \partial_\mu \chi$

- Consider the Dirac equation $(i\partial \!\!\!/ -m)\psi = 0$
 - if we rotate the phase of ψ through all of space-time $\psi \to e^{i\theta} \psi$
 - the Dirac equation remains valid (just an overall phase)
 - (n.b. May be easier to see if we consider the Lagrangian $\mathcal{L} = i\hbar \ \bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - mc \ \bar{\psi}\psi$ $\psi \to e^{i\theta}\psi$ $\bar{\psi} \to e^{-i\theta}\bar{\psi}$

LOCAL GAUGE TRANSFORMATION

- Now consider a more radical transformation:
 - Adjust the phase of the field as a function of space time
 - i.e. θ becomes a function of x

 $\theta \to \theta(x) \quad e^{-i\theta} \Rightarrow e^{-i\theta(x)}$

- this is called a "local gauge transformation"
- now consider the Dirac equation

•
$$\partial_{\mu}\psi \Rightarrow \partial_{\mu}(e^{i\theta(x)}\psi) = e^{i\theta}(\partial_{\mu}\psi) + i(\partial_{\mu}\theta)e^{i\theta}\psi$$

•
$$(i\partial \!\!\!/ - m)\psi = 0 \Rightarrow e^{i\theta} \times [i\partial \!\!\!/ - (\partial \!\!\!/ \theta) - m]\psi = 0$$

• extra term in the equation!

LOCAL GAUGE SYMMETRY

- Promote local gauge transformations to a symmetry
 - we require the equation to be invariant under local gauge transformations (i.e. space-time dependent phase rotations)
- The symmetry/invariance can be restored if:
 - we add a term to the equation $(i\partial\!\!\!/ -m)\psi = 0 \Rightarrow (i\partial\!\!\!/ -qA\!\!\!/ -m)\psi = 0$

• where:

$$A_{\mu} \to A_{\mu} - \frac{1}{q} \partial_{\mu} \theta(x) \qquad \psi \to e^{i\theta(x)} \psi$$

$$(i\partial \!\!\!/ - qA - m)\psi = 0$$

$$\Rightarrow e^{i\theta(x)} \times \left[i\partial \!\!\!/ - (\partial \!\!/ \theta) - qA + \partial \!\!/ \theta - m\right]\psi = 0$$

WHAT HAPPENED:

- We required the Dirac equation to be invariant under local gauge transformation
- this introduced a new field A with its own transformation
- Note:
 - A is a "vector" particle: i.e. A_{μ}
 - its transformation is the same as the EM gauge transformation
 - it couples to the Dirac field with a strength controlled by q
 - (it must be massless to preserve the symmetry)
- It has all the properties of a photon interacting with a Dirac particle with charge q
- electromagnetism is a "U(1) local gauge theory"

LINGO:

- "gauge symmetry" = "gauge invariance":
 - generalization of "phase symmetry"
- "covariant derivative":

 $\partial_{\mu} \to \partial_{\mu} + iqA_{\mu}$

- "gauge boson"
 - vector field introduced for local gauge invariance
- "gauge theory"
 - particle system that has a gauge symmetry

GENERALIZATION:

- Consider the group SU(2)
 - "2x2 unitary matrices with determinant 1"
 - we can parameterize the group as follows:

$$U = U(\vec{\theta}) = e^{i\frac{g}{2}\vec{\theta}\cdot\vec{\sigma}}$$

- where σ are Pauli matrices
- Note:
 - we can consider σ as generators of the group
 - there are three parameters which parametrize the group
 - the matrices act on two-component vectors/spinors

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
$$\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

"NON-ABELIAN GAUGE SYMMETRY"

- Now consider a theory in which we postulate:
 - "local gauge invariance under SU(2)"
 - θ parameters become space-time dependent

 $\vec{\theta} \to \vec{\theta}(x)$

• the "space/objects" we act on have two component

$$\psi \equiv \left(\begin{array}{c} \psi_1 \\ \psi_2 \end{array} \right) \to e^{i\frac{g}{2}\vec{\theta}\cdot\vec{\sigma}} \left(\begin{array}{c} \psi_1 \\ \psi_2 \end{array} \right)$$

 for Dirac particles, this means that we are considering a pair of Dirac fields (each with 4 components) that transform under SU(2) operators

GAUGE INVARIANCE

- Like before, gauge invariance requires new fields because of the space-time dependence of $\theta(x)$
- so we introduce three fields (Aⁱ) that transform as follows:

$$\vec{A}_{\mu} \to \vec{A}_{\mu} - \frac{1}{2}\partial_{\mu}\theta - \frac{g}{2}\epsilon_{ijk}\theta_i A^j_{\mu}$$

 one can show that this preserves the invariance under the SU(2) transformations for this equation of motion

$$(i\partial \!\!\!/ - \frac{g}{2}\vec{\sigma}\cdot\vec{A} - m)\psi = 0$$

- the extra term in the A transformation results from the fact that the the σ matrices do not commute.

WHAT HAPPENED:

- We now have a system of two fermions, each described by the Dirac equation
- local gauge symmetry requires three fields to cancel the "leftover" terms from the transformation
 - we have three new gauge fields which mediate interactions

$$\frac{g}{2}\vec{\sigma}\cdot\vec{A}\psi$$

• the additional term

$$\frac{g}{2}\vec{\theta} \times \vec{A}_{\mu}$$

- leads to interactions between the gauge bosons themselves
 - i.e. the bosons are "charged"

FOUNDATIONS:

- Quantum field theory arises from
 - special relativity
 - quantum mechanics
- with Local Gauge Invariance
 - we introduce interactions via bosons required to maintain the symmetry
 - however, the bosons must be massless
- Note the difference between:
 - the symmetry group (i.e. possible operations)
 - the objects on which they act
 - imposing symmetries on their behaviour (equations of motion, Lagrangian, etc.)

NEXT TIME

- Please read 10.5, 10.6
 - You can skip 10.5.1 unless it helps you understand 10.5.2
 - Problem Set 2 due on Tuesday