PHYSICS 489/1489
LECTURE 9:
QED EXPERIMENTS

A FEW NOTES

- There were a few typos in the last lecture
- I've placed an updated version of the slides on the website
- Please note that Problem Set 2 is posted
- due 25 October

LAST TIME

- We calculated the cross section for $e+e->m+m-$

$$
\mathcal{M}=-\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{v}(2) \gamma_{\mu} u(1)\right]
$$

- Evaluated the matrix element with various helicity combinations in the massless limit

$$
\begin{aligned}
\mathcal{M}_{L R \rightarrow L R} & =-\frac{e^{2}}{4 E^{2}}\left[\bar{u}_{3 L} \gamma^{\mu} v_{4 R}\right]\left[\bar{v}_{2 R} \gamma_{\mu} u_{1 L}\right] & \mathcal{M}_{L R \rightarrow R L} & =-\frac{e^{2}}{4 E^{2}}\left[\bar{u}_{3 R} \gamma^{\mu} v_{4 L}\right]\left[\bar{v}_{2 R} \gamma_{\mu} u_{1 L}\right] \\
& =e^{2}(1+\cos \theta)=\mathcal{M}_{R L \rightarrow R L} & & =e^{2} \times(-\cos \theta+1)=\mathcal{M}_{R L \rightarrow L R}
\end{aligned}
$$

- Obtain the differential (unpolarized, spin-summed) cross section

$$
\frac{d \sigma}{d \Omega}=\frac{e^{4}}{256 \pi^{2} E^{2}}(1 \pm \cos \theta)^{2} \quad \frac{d \sigma}{d \Omega}=\frac{e^{4}}{64 \pi^{2} s}\left(1+\cos ^{2} \theta\right)
$$

A FEW NOTES:

- The derivation applies to any spin $1 / 2$ fermion so long as
- massless approximation(s) is appropriate
- charge is appropriately scaled
- We can integrate over angles to get the total cross section

$$
\begin{array}{r}
\frac{d \sigma}{d \Omega}=\frac{e^{4}}{64 \pi^{2} s}\left(1+\cos ^{2} \theta\right) \Rightarrow \int d \phi \int d \cos \theta \frac{e^{4}}{64 \pi^{2} s}\left(1+\cos ^{2} \theta\right) \\
\int d \cos \theta \frac{e^{4}}{32 \pi s}\left(1+\cos ^{2} \theta\right) \\
\frac{e^{4}}{12 \pi s}=\frac{4 \pi \alpha^{2}}{3 s}
\end{array}
$$

- If we did not neglect the masses, we would obtain:

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=g_{e}^{4}\left[1+\left(\frac{m c^{2}}{E}\right)^{2}+\left(\frac{M c^{2}}{E}\right)^{2}+\left[1-\left(\frac{m c^{2}}{E}\right)^{2}\right]\left[1-\left(\frac{M c^{2}}{E}\right)^{2}\right] \cos ^{2} \theta\right]
$$

DETECTING PARTICLES

- For the most part, we can only detect charged particles
- neutral particles can be detected if they
- interact with charged particles which are in turn detected
- decay to produce charged particles
- Detection methods:
- ionization
- scintillation
- Cherenkov radiation
- acoustic

IONIZATION:

- Knock out of electrons from atom as a charged particle passes through a medium
- Ionization rate depends on velocity of particle
- if we independently know the velocity of momentum of the particle, we can determine the particle identity
- e.g. if the medium of
- "Tracking" detectors which determine the trajectory of a particle typically use ionization

HOW TO DETECT IONIZATION

phase transitions

sparking, streaming

drifting in gas/liquid

ELECTRONS AND PHOTONS

- electrons differ from other charged particles by their lightness and the presence of electrons in media
- nuclear field can induce acceleration leading to radiation "bremsstrahlung"
- Photons will interact via Compton scattering or pair production at high energies

ELECTROMAGNETIC SHOWERS

- Cascade of

Bremsstrahlung, pair production, compton scattering, etc.

ACCELERATORS

- Several generations of electron accelerators
- CESR @ Cornell
- SLAC linear accelerator
- SLAC collier
- Also
- PETRA at DESY (Hamburg, Germany)
- TRISTAN at KEK (Tsukuba, Japan)
- VEPP at BINP (Novosibirsk, Russia)
- BES (Beijing, China)

LEP

- Before the LHC there was LEP:
- "large electron positron collider"
- operated primarily at 91 GeV to study Z production and decays

- "LEP-II":
- increase of energy up to 209 GeV

DETECTORS

BABAR Detector

- Most collider detectors share a similar "cylindrical onion" design surrounding the interaction point
- inner tracking region (silicon, drift chambers, etc.)
- particle identification (Cherenkov counter, time-of-flight, etc.)
- electromagnetic calorimeter (measure/identify electron/photon energy)
- muon detector: identify muons by their penetration through lots of material
- magnetic field throughout to bend particles and measure sign/momentum

EVENTS AT BABAR

- $e^{+}+e^{-} \rightarrow e^{+}+e^{-}$event ("Bhabha scattering"
- "straight" track: high momentum
- large deposition in electromagnetic calorimeter (green)
- $e^{+}+e^{-} \rightarrow \mu^{+}+\mu^{-}$would look similar but with little calorimeter deposition

- "Hadronic" event at BaBar
- $e^{+}+e^{-} \rightarrow q q$
- b and c quarks produced

t PRODUCTION

- General expression without massless assumption:

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=g_{e}^{4}\left[1+\left(\frac{m c^{2}}{E}\right)^{2}+\left(\frac{M c^{2}}{E}\right)^{2}+\left[1-\left(\frac{m c^{2}}{E}\right)^{2}\right]\left[1-\left(\frac{M c^{2}}{E}\right)^{2}\right] \cos ^{2} \theta\right]
$$

- if we consider e+e- -> t+t-, we can still assume electron mass is ~ 0, but keep the mass of the t.

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=g_{e}^{4}\left[1+\left(\frac{M c^{2}}{E}\right)^{2}+\left[1-\left(\frac{M c^{2}}{E}\right)^{2}\right] \cos ^{2} \theta\right]
$$

- Now putting into our cross section formulas

$$
\frac{d \sigma}{d \cos \theta d \phi}=\left(\frac{\hbar c}{8 \pi}\right)^{2} \frac{\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle}{4 E^{2}} \frac{\left|p_{f}\right|}{\left|p_{i}\right|}
$$

- Integrate to obtain total cross section

$$
\sigma=\frac{\pi}{3}\left(\frac{\hbar c \alpha}{E}\right)^{2} \sqrt{1-\left(M c^{2} / E\right)^{2}}\left[1+\frac{1}{2}\left(\frac{M c^{2}}{E}\right)^{2}\right]
$$

RATIO OF CROSS SECTIONS

- $e^{+}+e^{-} \rightarrow \mu^{+}+\mu^{-}$has a very distinct signature in the detector.
- predict the ratio of \mathbf{T} production to μ production:

$$
R_{\tau \mu}=\frac{\sigma_{\tau^{+} \tau^{-}}}{\sigma_{\mu^{+} \mu^{-}}}=\frac{\sqrt{1-\left(M_{\tau} c^{2} / E\right)^{2}}}{\sqrt{1-\left(M_{\mu} c^{2} / E\right)^{2}}} \times \frac{1+\frac{1}{2}\left(M_{\tau} c^{2} / E\right)^{2}}{1+\frac{1}{2}\left(M_{\mu} c^{2} / E\right)^{2}}
$$

- Step the accelerator in energy
- count the number of \mathbf{T} and μ produced at each energy
- Plot the ratio vs. beam energy
- Ratio depends on:
- Dirac nature of \mathbf{T}
- T mass

TOTAL CROSS SECTION

- If we go to high energy ($\mathrm{E} \gg \mathrm{m}_{\tau} \sim 1.777 \mathrm{GeV}$)

BHABHA SCATTERING

- $e^{+}+e^{-} \rightarrow e^{+}+e^{-}$
- additional diagram contributes

THE "GYROMAGNETIC RATIO" $\mu=g \mu_{B} s / \hbar \quad \mu_{B}=\frac{e \hbar}{2 m}$

- Ratio of magnetic moment to the spin \times Bohr magneton
- This is not exactly 2 for an electron
- higher order electromagnetic corrections
- $a=(g-2) / 2=\sim 0.0011596521807328$
- "anomalous" moment
- first calculated by Julian Schwinger in 1948
- $a \sim \alpha / 2 \pi=0.0011614$

THE MUON g-2 EXPERIMENT

- Precess muon spin in a magnetic field as it circulates around a ring
- direction of electron emerging from muon decay is correlated with its polarization
- measure the precession of the spin to extract magnetic moment
- Predicted $(\mathrm{g}-2) / 2=(1165918.81 \pm 0.38) \times 10$
- Measured $(\mathrm{g}-2) / 2=(1165920.80 \pm 0.63) \times 10$

FIG. 3. Positron time spectrum overlaid with the fitted 10 parameter function ($\chi^{2} / \mathrm{dof}=3818 / 3799$). The total event sample of $0.95 \times 10^{9} \mathrm{e}^{+}$with $E \geq 2.0 \mathrm{GeV}$ is shown

SUMMARY

- Please read Chapter 7 for next time

