LECTUVE 8 .
ELECTRON-POSITRON
ANNIHILATION

Step I/II: The Feynman Diagram and rules

$$
\begin{gathered}
\frac{1}{(2 \pi)^{4}} \int d^{4} q \frac{-i g_{\mu \nu}}{q^{2}} \\
\bar{u}(3) i g_{e} \gamma^{\mu} v(4)(2 \pi)^{4} \delta^{4}\left(q-p_{3}-p_{4}\right) \\
\bar{v}(2) i g_{e} \gamma^{\nu} u(1)(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-q\right) \\
{\left[\bar{u}(3) \gamma^{\mu} v(4)\right] g_{\mu \nu}\left[\bar{v}(2) \gamma^{\nu} u(1)\right]} \\
i(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \times \frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}} \\
\mathcal{M}=-\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{v}(2) \gamma_{\mu} u(1)\right]
\end{gathered}
$$

WHAT TO DO WITH THIS?

- We need to evaluate the amplitude
- Recall the cross section expression:

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s} \frac{\left|\mathbf{p}_{\mathbf{f}}\right|}{\left|\mathbf{p}_{\mathbf{i}}\right|}|\mathcal{M}|^{2}
$$

$$
\sigma=\frac{S \hbar^{2}}{4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-\left(m_{1} m_{2} c^{2}\right)^{2}}} \times \int|\mathcal{M}|^{2} \times(2 \pi)^{4} \delta^{4}\left(p_{1}^{\mu}+p_{2}^{\mu}-\sum_{f=3}^{N} p_{f}^{\mu}\right) \times \prod_{f=3}^{N} \frac{1}{2 \sqrt{\mathbf{p}_{f}^{2}+m_{f}^{2} c^{2}}} \frac{d^{3} \mathbf{p}_{f}}{(2 \pi)^{3}}
$$

- We need to calculate $|\mathrm{M}|^{2}$ and put it into the phase space expression
- What expressions should we use for the spinors?
- Recall that a Dirac particle basically has three properties
- particle or antiparticle
- $\operatorname{spin}(1 / 2)$
- momentum

HELICITY STATES

- We had previously constructed helicity states of a Dirac particle along the z-axis

Use "positive" energy solutions

$$
-v_{2} \equiv u_{3}=N\left(\begin{array}{c}
p_{z} c /\left(E+m c^{2}\right) \\
\left(p_{x}+i p_{y}\right) c /\left(E+m c^{2}\right) \\
1 \\
0
\end{array}\right) \quad v_{1} \equiv u_{4}=N\left(\begin{array}{c}
\left(p_{x}-i p_{y}\right) c /\left(E+m c^{2}\right) \\
-p_{z} c /\left(E+m c^{2}\right) \\
0 \\
1
\end{array}\right)
$$

positrons

- We now generalize this to any direction

HELICITY OPERATOR:

- Recall that helicity is the projection of the spin onto the direction of motion
- In considering the angular momentum properties, we introduced the spin operator:

$$
\mathbf{S}=\frac{\hbar}{2}\left(\begin{array}{cc}
\vec{\sigma} & 0 \\
0 & \vec{\sigma}
\end{array}\right)
$$

- So if we want to project this along the direction of the momentum, we have

$$
\mathbf{h}=\frac{1}{|\mathbf{p}|} \mathbf{S} \cdot \mathbf{p}=\frac{\hbar}{2|\mathbf{p}|}\left(\begin{array}{cc}
\vec{\sigma} \cdot \mathbf{p} & 0 \\
0 & \vec{\sigma} \cdot \mathbf{p}
\end{array}\right)
$$

HELICITY EIGENSTATES

- By applying \mathbf{h} to a hypothesized spinor, we can derive the eigenstates
- With polar coordinates:
- $\theta=$ polar angle to z axis
$s=\sin \theta / 2$
- $\phi=$ azimuthal angle atan $\left(\mathrm{p}_{\mathrm{y}} / \mathrm{p}_{\mathrm{z}}\right)$
$\mathrm{c}=\cos \theta / 2$
$u_{\uparrow}=\sqrt{E+m}\left(\begin{array}{c}\cos \frac{\theta}{2} \\ e^{i \phi} \sin \frac{\theta}{2} \\ \frac{p}{E+m} \cos \frac{\theta}{2} \\ \frac{p}{E+m} e^{i \phi} \sin \frac{\theta}{2}\end{array}\right) \quad u_{\downarrow}=\sqrt{E+m}\left(\begin{array}{c}-\sin \frac{\theta}{2} \\ e^{i \phi} \cos \frac{\theta}{2} \\ \frac{p}{E+m} \sin \frac{\theta}{2} \\ -\frac{p}{E+m} e^{i \phi} \cos \frac{\theta}{2}\end{array}\right)$
$v_{\uparrow}=\sqrt{E+m}\left(\begin{array}{c}\frac{p}{E+m} s \\ -\frac{p}{E+m} e^{i \phi} c \\ -s \\ c e^{i \phi}\end{array}\right) \quad v_{\downarrow}=\sqrt{E+m}\left(\begin{array}{c}\frac{p}{E+m} c \\ \frac{p}{E+m} e^{i \phi} s \\ c \\ s e^{i \phi}\end{array}\right)$

REALTIVISTIC LIMIT

- If $E \gg$ m

$$
\begin{aligned}
& u_{\uparrow}=\sqrt{E+m}\left(\begin{array}{c}
c \\
s e^{i \phi} \\
\frac{e^{+}}{E+m} c \\
E+m e^{i e^{2}} s
\end{array}\right) \longrightarrow \quad u_{\uparrow}=\sqrt{E}\left(\begin{array}{c}
c \\
s e^{i \phi} \\
c \\
e^{i \phi} s
\end{array}\right)
\end{aligned}
$$

INCOMING SPINORS

$$
\mathcal{M}=-\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{v}(2) \gamma_{\mu} u(1)\right]
$$

- Initial state: put it along the z-axis
- incoming electron ($\theta=0, \phi=0$)

$$
u_{\uparrow}\left(p_{1}\right)=\sqrt{E_{1}}\left(\begin{array}{c}
c_{1} \\
s_{1} e^{i \phi_{1}} \\
c_{1} \\
e^{i \phi_{1}} s_{1}
\end{array}\right) \Rightarrow \sqrt{E_{1}}\left(\begin{array}{c}
1 \\
0 \\
1 \\
0
\end{array}\right) \quad u_{\downarrow}\left(p_{1}\right)=\sqrt{E_{1}}\left(\begin{array}{c}
-s \\
c_{1} e^{i \phi_{1}} \\
s_{1} \\
-c^{i \phi_{1}} s_{1}
\end{array}\right) \Rightarrow \sqrt{E_{1}}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right)
$$

- incoming positron ($\theta=\pi, \phi=0$)

$$
v_{\uparrow}\left(p_{2}\right)=\sqrt{E_{2}}\left(\begin{array}{c}
s_{2} \\
-c e^{i \phi_{2}} \\
-s_{2} \\
c_{2} e^{i \phi_{2}}
\end{array}\right) \Rightarrow \sqrt{E_{2}}\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right) \quad v_{\downarrow}\left(p_{2}\right)=\sqrt{E_{2}}\left(\begin{array}{c}
c_{2} \\
s_{2} e^{i \phi_{2}} \\
c_{2} \\
e^{i \phi_{2}} s_{2}
\end{array}\right) \Rightarrow \sqrt{E_{2}}\left(\begin{array}{c}
0 \\
-1 \\
0 \\
-1
\end{array}\right)
$$

OUTGOING SPINORS

$$
\mathcal{M}=-\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{v}(2) \gamma_{\mu} u(1)\right]
$$

- Outgoing state:
- incoming electron $\left(\theta_{3}, 0\right)$

$$
u_{\uparrow}\left(p_{3}\right)=\sqrt{E_{3}}\left(\begin{array}{c}
c_{3} \\
s_{3} e^{i \phi_{3}} \\
c_{3} \\
s_{3} e^{i \phi_{3}}
\end{array}\right) \quad \Rightarrow \sqrt{E_{3}}\left(\begin{array}{c}
c_{3} \\
s_{3} \\
c_{3} \\
s_{3}
\end{array}\right) \quad u_{\downarrow}\left(p_{3}\right)=\sqrt{E_{3}}\left(\begin{array}{c}
-s_{3} \\
c_{3} e^{i \phi_{3}} \\
s_{3} \\
-c_{3} e^{i \phi_{3}}
\end{array}\right) \Rightarrow \sqrt{E_{3}}\left(\begin{array}{c}
-s_{3} \\
c_{3} \\
s_{3} \\
-c_{3}
\end{array}\right)
$$

- incoming positron $\left(\theta_{4}=\pi-\theta_{3}, \phi=\pi\right)$

$$
v_{\uparrow}\left(p_{4}\right)=\sqrt{E_{4}}\left(\begin{array}{c}
s_{4} \\
-c_{4} e^{i \phi_{4}} \\
-s_{4} \\
c_{4} e^{i \phi_{4}}
\end{array}\right) \quad \Rightarrow \sqrt{E_{4}}\left(\begin{array}{c}
c_{3} \\
s_{3} \\
-c_{3} \\
-s_{3}
\end{array}\right) \quad v_{\downarrow}\left(p_{4}\right)=\sqrt{E_{4}}\left(\begin{array}{c}
c_{4} \\
s_{4} e^{i_{4}} \\
c_{4} \\
s_{4} e^{i \phi_{4}}
\end{array}\right) \quad \Rightarrow \sqrt{E_{4}}\left(\begin{array}{c}
s_{3} \\
-c_{3} \\
s_{3} \\
-c_{3}
\end{array}\right)
$$

HELICITY COMBINATIONS

- Now we can consider any combinations of felicities by placing the appropriate spinors in the expression

$$
\mathcal{M}=-\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\begin{array}{c}
\mathrm{j}_{\mu}
\end{array} \mathrm{j}_{\mathrm{e}}(3) \gamma^{\mu} v(4)\right]\left[\bar{v}(2) \gamma_{\mu} u(1)\right]
$$

- Note that in general we will consider products like

$$
\begin{array}{cl}
& \bar{\psi} \gamma^{\mu} \phi=\psi^{\dagger} \gamma^{0} \gamma^{\mu} \phi \\
\bar{\psi} \gamma^{0} \phi=\psi^{\dagger} \gamma^{0} \gamma^{0} \phi & =\psi_{1}^{*} \phi_{1}+\psi_{2}^{*} \phi_{2}+\psi_{3}^{*} \phi_{3}+\psi_{4}^{*} \phi_{4} \\
\bar{\psi} \gamma^{1} \phi=\psi^{\dagger} \gamma^{0} \gamma^{1} \phi & =\psi_{1}^{*} \phi_{4}+\psi_{2}^{*} \phi_{3}+\psi_{3}^{*} \phi_{2}+\psi_{4}^{*} \phi_{1} \\
\bar{\psi} \gamma^{2} \phi=\psi^{\dagger} \gamma^{0} \gamma^{2} \phi & =-i\left(\psi_{1}^{*} \phi_{4}-\psi_{2}^{*} \phi_{3}+\psi_{3}^{*} \phi_{2}-\psi_{4}^{*} \phi_{1}\right) \\
\bar{\psi} \gamma^{3} \phi=\psi^{\dagger} \gamma^{0} \gamma^{3} \phi & =\psi_{1}^{*} \phi_{3}-\psi_{2}^{*} \phi_{4}+\psi_{3}^{*} \phi_{1}-\psi_{4}^{*} \phi_{2}
\end{array}
$$

$$
\gamma^{0}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

$$
\gamma^{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

$$
\gamma^{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right)
$$

$$
\gamma^{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

j_{μ}

- We can try the " $\uparrow \downarrow$ " or "RL" combination

$$
\begin{aligned}
& \bar{u}_{R} \gamma^{0} v_{L}=E \times(c s-c s+c s-c s)=0 \\
& =\psi_{1}^{*} \phi_{1}+\psi_{2}^{*} \phi_{2}+\psi_{3}^{*} \phi_{3}+\psi_{4}^{*} \phi_{4} \\
& \bar{u}_{R} \gamma^{1} v_{L}=E \times\left(-c^{2}+s^{2}-c^{2}+s^{2}\right)=2 E\left(s^{2}-c^{2}\right)=-2 E \cos \theta \\
& =\psi_{1}^{*} \phi_{4}+\psi_{2}^{*} \phi_{3}+\psi_{3}^{*} \phi_{2}+\psi_{4}^{*} \phi_{1} \\
& \bar{u}_{R} \gamma^{2} v_{L}=-i E \times\left(-c^{2}-s^{2}-c^{2}-s^{2}\right)=2 i e\left(c^{2}+s^{2}\right)=2 i E \\
& =-i\left(\psi_{1}^{*} \phi_{4}-\psi_{2}^{*} \phi_{3}+\psi_{3}^{*} \phi_{2}-\psi_{4}^{*} \phi_{1}\right) \\
& \bar{u}_{R} \gamma^{3} v_{L}=E \times(c s+s c+c s+s c=4 E s c=2 E \sin \theta \\
& =\psi_{1}^{*} \phi_{3}-\psi_{2}^{*} \phi_{4}+\psi_{3}^{*} \phi_{1}-\psi_{4}^{*} \phi_{2} \\
& \bar{u}_{R} \gamma^{\mu} v_{L}=2 E(0,-\cos \theta, i, \sin \theta) \\
& \bar{u}_{L} \gamma^{\mu} v_{R}=2 E(0,-\cos \theta,-i, \sin \theta) \\
& \bar{u}_{R} \gamma^{\mu} v_{R}=2 E(0,0,0,0) \\
& \bar{u}_{L} \gamma^{\mu} v_{L}=2 E(0,0,0,0)
\end{aligned}
$$

j_{e}

- By the same methods, can show:

$$
\begin{array}{ll}
\bar{u}_{L} \gamma^{\mu} v_{L}=2 E(0,0,0,0) & \bar{u}_{R} \gamma^{\mu} v_{R}=2 E(0,0,0,0) \\
\bar{u}_{L} \gamma^{\mu} v_{R}=2 E(0,-1, i, 0) & \bar{u}_{R} \gamma^{\mu} v_{L}=2 E(0,-1,-i, 0)
\end{array}
$$

- and we can combine with jm to get the amplitude for any particular helicity combination

$$
\bar{u}_{R} \gamma^{\mu} v_{L}=2 E(0,-\cos \theta, i, \sin \theta) \quad \bar{u}_{L} \gamma^{\mu} v_{R}=2 E(0,-\cos \theta,-i, \sin \theta)
$$

$$
\begin{array}{rlrl}
\mathcal{M}_{L R \rightarrow L R}=-\frac{e^{2}}{4 E^{2}}\left[\bar{u}_{3 L} \gamma^{\mu} v_{4 R}\right]\left[\bar{v}_{2 R} \gamma_{\mu} u_{1 L}\right] & \mathcal{M}_{L R \rightarrow R L} & =-\frac{e^{2}}{4 E^{2}}\left[\bar{u}_{3 R} \gamma^{\mu} v_{4 L}\right]\left[\bar{v}_{2 R} \gamma_{\mu} u_{1 L}\right] \\
= & =-\frac{4 e^{2} E^{2}}{\left(p_{1}+p_{2}\right)^{2}}(0-\cos \theta-1,0) & & =-e^{2} \times(0-\cos \theta+1+0) \\
=e^{2}(1+\cos \theta)=\mathcal{M}_{R L \rightarrow R L} & & =e^{2} \times(-\cos \theta+1) \\
& =\mathcal{M}_{R L \rightarrow L R}
\end{array}
$$

ENDGAME

- Put these into our differential cross section:
- and recall that $s=\left(p_{1}+p_{2}\right)^{2}=(2 E)^{2}$

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s} \frac{\left|\mathbf{p}_{\mathbf{f}}\right|}{\left|\mathbf{p}_{\mathbf{i}}\right|}|\mathcal{M}|^{2} \\
&\left|\mathcal{M}_{L R \rightarrow L R}\right|^{2}=\left|\mathcal{M}_{R L \rightarrow R L}\right|^{2}=e^{4}(1+\cos \theta)^{2} \\
&\left|\mathcal{M}_{L R \rightarrow R L}\right|^{2}=\left|\mathcal{M}_{R L \rightarrow L R}\right|^{2}=e^{4}(1-\cos \theta)^{2} \\
& \frac{d \sigma}{d \Omega}=\frac{e^{4}}{256 \pi^{2} E^{2}}(1 \pm \cos \theta)^{2}
\end{aligned}
$$

- The unpolarized spin-averaged cross section
- if we detect all outgoing helicity states, add up all the contributions
- if the beams are unpolarized (i.e. initial states are half of each helicity), each helicity combination is $1 / 4$ of the total beam, so we divide by 4

$$
\frac{d \sigma}{d \Omega}=\frac{e^{4}}{64 \pi^{2} s}\left(1+\cos ^{2} \theta\right)
$$

NEXT TIME

- Please read rest of Chapter 6

