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R E M I N D E R

• Problem set 1 due today  

• 1700 in Box #7 

• If you did not get an email from me on Monday night 
regarding the problem set, please email me. 

• I am using emails in blackboard 

• If that is not where you get your email, please let me know.



T H E  P H O T O N
• Apart from        we need some other particle/object with definite 

Lorentz transformation properties to make Lorentz invariants 

• What would we do with the “vector” term            to get a Lorentz scalar? 

• Recall the photon: 

• Classically, we have Maxwell’s equations: 

• Recall that we can re-express the Maxwell equations using potentials: 

• these can in turn be combined to make a 4 vector: 

• Likewise for the “source” terms ρ and J: 
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M A X W E L L’ S  E Q U AT I O N
• All four equations can be expressed as: 

• The issue is that A is (far) from unique: 

• Consider: 

• last terms cancel, so “new” Aµ is also a solution to Maxwell’s equation 

• they are physically the same, so we can make some conventions: 

• “Lorentz gauge condition”: 

• “Coulomb gauge”
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“ F R E E ”  S O L U T I O N S

• “Free” means no sources (charges, currents): Jµ=0 

• Find solution by ansatz: 

• Now check: 

• Conclusions: 

• Photon is massless 

• Polarization ε  is transverse to photon direction (in Coulomb gauge):  

• it has two degrees of freedom/polarizations
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M A I K I N G  A  S C A L A R  O B J E C T

• In the end, these spaces must collapse: 

• In Lorentz space, this happens by contracting indices: 

• In spinor space, products of adjoint spinors with spinors (with gamma 
matrices possibly in between):                    Г=(product of g matrices) 

• but some expressions have structure in both:
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R E M I N D E R  O F  D I R A C  S P I N O R S

• States:
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A  S E C O N D  L O O K  AT  D I R A C  E Q U AT I O N

• “s” labels the spin states (two for electrons/positrons) 

• exponential term sets the space/time = energy/momentum 

• “spinor” u,v which determines the “Dirac structure”: 

• If we insert ψ into the Dirac equation, we get: 

• If we take the adjoint of these equations, we get:
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O R T H O G O N A L I T Y / C O M P L E T E N E S S

• From the explicit form of our u/v spinors: 

• We can also show:
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P H O T O N S : P O L A R I Z AT I O N / O R T H O G O N A L I T Y

• We showed that the polarization 4-vector εμ with the Lorentz and 
Coloumb gauge conditions must satisfy: 

• We noted that this allows two degrees of freedom corresponding to 
transversely polarized electromagnetic fields.  

• We need to two orthogonal ε basis vectors to span the space 

• If the photon is moving in the z direction, we can choose: 

• The polarization vectors satisfy orthogonality/completeness relations:
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F E Y N M A N  R U L E S :  E X T E R N A L  L I N E S
• Right down the Feynman diagram(s) for the process and 

label the momentum flow 

• use p’s for external lines, q’s for internal (Griffiths convention). 

• Note that there are two flows: 

• “particle/antiparticle” 

• momentum  

• These are separate 

• Now the components of the expression 

• External Lines: 

• Electrons: incoming              outgoing 

• Positrons: incoming              outgoing 

• Photons:   incoming              outgoing    
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V E R T I C E S  A N D  P R O PA G AT O R S
• For each QED vertex: 

• momentum is “+” incoming, “-” outgoing from vertex 

• ge is the electromagnetic coupling (Qe) 

• Internal lines: 

• electron/positron propagator 

• Photon propagator 

• indices match vertices/polarization 

• Integral over momentum: 

• Finally: cancel the overall delta function, what remains is -iM
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E X A M P L E

• Order matters due to Dirac matrix structure (photon part doesn’t care) 

• Griffiths: go backward through the fermion lines: 

• In the “final state”:  

• In the “initial state”: 

• Throw in the internal photon propagator:
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E X A M P L E :  e ++ e -→e +  +  e -
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N E X T  T I M E :

• Please read 6.1 and 6.2 

• I would explicitly work out spin summation procedure in 
6.2.1 and 6.2.4  

• Unfortunately I will be out of town again on Monday 

• If you were planning to come to office hours and cannot 
come on Tuesday, please contact me and we’ll figure 
something out.  

• If it’s urgent, I have some time after class today.


