H. A. TANAKA

LECTURE 6:
MORE PROPERTIES OF THE DIRAC EQUATION

TRANSFORMING THE DIRAC EQUATION:

$$
\begin{aligned}
& i \hbar \gamma^{\mu} \partial_{\mu} \psi-m c \psi=0 \quad i \hbar \gamma^{\mu} \partial_{\mu}^{\prime} \psi^{\prime}-m c \psi^{\prime}=0 \\
& i \hbar \gamma^{\mu} \partial_{\mu}^{\prime}(S \psi)-m c(S \psi)=0 \\
& i \hbar \gamma^{\mu} \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}} \partial_{\nu}(S \psi)-m c(S \psi)=0 \\
& \text { S is constant in space time, so we can } \\
& \text { move it to the left of the derivatives } \\
& i \hbar \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}} \partial_{\nu} \psi-m c(S \psi)=0 \\
& i \hbar \gamma^{\nu} \partial_{\nu} \psi-m c \psi=0 \text { Now slap } S^{-1} \text { from both sides } \\
& S^{-1} \rightarrow i \hbar \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}} \partial_{\nu} \psi-m c S \psi=0
\end{aligned}
$$

Since these equations must be the same, S must satisfy

$$
\gamma^{\nu}=S^{-1} \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}}
$$

EXAMPLE: THE PARITY OPERATOR

- For the parity operator, we want to invert the spatial coordinates while keeping the time coordinate unchanged:
$P=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right) \quad \begin{array}{ll}\frac{\partial x_{0}}{\partial x_{0}{ }^{\prime}}=1 \\ \frac{\partial x_{2}}{\partial x_{2}{ }^{\prime}}=-1 & \frac{\partial x_{1}}{\partial x_{1}{ }^{\prime}}=-1 \\ \frac{\partial x_{3}}{\partial x_{3^{\prime}}}=-1\end{array}$
- We then have

$$
\begin{aligned}
& \gamma^{0}=S^{-1} \gamma^{0} S \\
& \gamma^{1}=-S^{-1} \gamma^{1} S \\
& \gamma^{2}=-S^{-1} \gamma^{2} S \\
& \gamma^{3}=-S^{-1} \gamma^{3} S
\end{aligned}
$$

Recalling

$$
\begin{aligned}
& \gamma^{\nu}=S^{-1} \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu \prime}} \\
& \gamma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \left(\gamma^{0}\right)^{2}=1
\end{aligned}
$$

We find that γ^{0} satisfies our needs

$$
\begin{aligned}
& \gamma^{0}=\gamma^{0} \gamma^{0} \gamma^{0}=\gamma^{0} \\
& \gamma^{i}=-\gamma^{0} \gamma^{i} \gamma^{0}=\gamma^{0} \gamma^{0} \gamma^{i}=\gamma^{i}
\end{aligned}
$$

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \Rightarrow \gamma^{0} \gamma^{i}=-\gamma^{i} \gamma^{0} \quad S_{P}=\gamma^{0}
$$

LORENTZ COVARIANT QUANTITIES

- Recall that for four vectors a^{μ}, b^{μ}
- a^{μ}, b^{μ} transform as Lorentz vectors (obviously)
- $a^{4} b_{\mu}$ is a scalar (does not change under Lorentz transformations
- $a^{\mu} b^{v}$ is a tensor (each has a Lorentz transformation)
- From the previous discussion, we know:
- Dirac spinors have four components, but don't transform as Lorentz vectors
- How do combinations of Dirac spinors change under Lorentz Transformations?

HOW DO WE CONSTRUCT A SCALAR?

- We can use γ^{0} : define: $\bar{\psi}=\psi^{\dagger} \gamma^{0}$
- Consider a Lorentz transformation with S acting on the spinor
- We can also show generally that $S^{\dagger} \gamma^{0} S=\gamma^{0}$
- This gives us $\bar{\psi} \psi \Rightarrow \psi^{\dagger} S^{\dagger} \gamma^{0} S \psi=\psi^{\dagger} \gamma^{0} \psi=\bar{\psi} \psi$
- so this is a Lorentz invariant
- We can construct the parity operator to check how $\bar{\psi} \psi$ transforms under the parity operation.
- Recall $S_{p}=\gamma^{0}$
- We can investigate how $\bar{\psi} \psi$ transforms under parity

$$
\bar{\psi} \psi \Rightarrow\left(\psi^{\dagger} S_{P}^{\dagger} \gamma^{0}\right)\left(S_{P} \psi\right)=\psi^{\dagger} \gamma^{0} \gamma^{0} \gamma^{0} \psi=\psi^{\dagger} \gamma^{0} \psi=\bar{\psi} \psi
$$

$\bar{\psi} \psi$ doesn't change sign under parity it is a Lorentz scalar

THE γ^{5} OPERATOR

- Define the operator γ^{5} as:

$$
\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}
$$

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- It anticommutes with all the other γ matrices:

$$
\left\{\gamma^{\mu}, \gamma^{5}\right\}=0
$$

- use the canonical anti-commutation relations to move γ^{μ} to the other side
- γ^{4} will anti-commute with for $\mu \neq v$
- $\gamma^{\text {II }}$ will commute when $\mu=v$
- We can then consider the quantity $\bar{\psi} \gamma^{5} \psi$
- Can show that this is invariant under Loretnz transformation.
- What about under parity?
$\bar{\psi} \gamma^{5} \psi \Rightarrow\left(\psi^{\dagger} S_{P}^{\dagger}\right) \gamma^{0} \gamma^{5}\left(S_{P} \psi\right)=-\left(\psi^{\dagger} S_{P}^{\dagger}\right) \gamma^{0} S_{P} \gamma^{5} \psi=-\psi^{\dagger} \gamma^{0} \gamma^{5} \psi=-\bar{\psi} \gamma^{5} \psi$
$\bar{\psi} \gamma^{5} \psi$ is a "pseudoscalar"

OTHER COMBINATIONS

- We can use γ^{μ} to make vectors and tensor quantities:
$\bar{\psi} \psi \quad$ scalar
$\bar{\psi} \gamma^{5} \psi \quad$ pseudoscalar
$\bar{\psi} \gamma^{\mu} \psi \quad$ vector
$\bar{\psi} \gamma^{\mu} \gamma^{5} \psi \quad$ pseudovector
$\bar{\psi} \sigma^{\mu \nu} \psi \quad$ antisymmetric tensor

1 component
1 component
4 components
4 components
6 components $\quad \sigma^{\mu \nu}=\frac{i}{2}\left(\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu} \gamma^{\mu}\right)$

- You can tell the transformation properties by looking at the Lorentz indices
- γ^{5} introduces a sign (adds a "pseudo")
- Every combination of $\psi^{*}{ }_{i} \psi_{\mathrm{j}}$ is a linear combination of the above.
- We will see that the above are the basis for creating interactions with Dirac particles. Interactions will be classified as "vector" or "pseudovector", etc.

Angular Momentum and the Dirac Equation:

- Conservation:
- In quantum mechanics, what is the condition for a quantity to be conserved?

$$
[H, Q]=0
$$

- Free particle Hamiltonian in non-relativistic quantum mechanics:

$$
H=\frac{p^{2}}{2 m} \quad[H, p]=\left[\frac{p^{2}}{2 m}, p\right]=\frac{1}{2 m}\left[p^{2}, p\right]=0
$$

- thus we conclude that the momentum p is conserved
- If we introduce a potential:

$$
[H, p]=\left[\frac{p^{2}}{2 m}+V(x), p\right]=\frac{1}{2 m}\left[p^{2}+V(x), p\right] \neq 0
$$

- thus, momentum is not conserved

Hamiltonian for the Dirac Particle:

- Starting with the Dirac equation,

$$
\left(\gamma^{\mu} p_{\mu}-m c\right) \psi=0
$$

- determine the Hamiltonian by solving for the energy
- Hints:

$$
\left(\gamma^{0}\right)^{2}=0
$$

- Answer: $H=c \gamma^{0}(\gamma \cdot \mathbf{p}+m c)$

Is orbital angular momentum conserved?

- We want to evaluate $[H, \vec{L}]$
- Recall: $\vec{L}=\vec{x} \times \vec{p}$

$$
L_{i}=\epsilon_{i j k} x^{j} p^{k}
$$

$$
H=c \gamma^{0}(\gamma \cdot \mathbf{p}+m c)
$$

$$
H=c \gamma^{0}\left(\delta_{a b} \gamma^{a} p^{b}+m c\right)
$$

$$
\left[H, L_{i}\right]=\left[c \gamma^{0}\left(\delta_{a b} \gamma^{a} p^{b}+m c\right), \epsilon_{i j k} x^{j} p^{k}\right]
$$

- which parts do not commute?

$$
\begin{array}{cl}
{\left[c \gamma^{0} \delta_{a b} \gamma^{a} p^{b}, \epsilon_{i j k} x_{j} p_{k}\right]} & {\left[m c, \epsilon_{i j k} x_{j} p_{k}\right]} \\
c \gamma^{0} \delta_{a b} \epsilon_{i j k}\left[p^{b}, x^{j} p^{k}\right] & {[A, B C]=[A, B] C+B[A, C]} \\
c \delta_{a b} \epsilon_{i j k} \gamma^{0} \gamma^{a}\left(-i \hbar \delta^{b j} p^{k}\right) & -i \hbar c \gamma^{0} \epsilon_{i j k} \gamma^{j} p^{k}
\end{array}-i \hbar c \gamma^{0}(\vec{\gamma} \times \vec{p}) \quad .
$$

Orbital angular momentum is not conserved

Spin

- Consider the operator $\vec{S}=\frac{\hbar}{2} \vec{\Sigma}=\frac{\hbar}{2}\left(\begin{array}{cc}\vec{\sigma} & 0 \\ 0 & \vec{\sigma}\end{array}\right) \quad$ acting on Dirac spinors
- Note that it satisfies all the properties of an angular momentum operator.
- Let's consider the commutator of this with the hamiltonian $H=c \gamma^{0}(\gamma \cdot \mathbf{p}+m c)$

$$
\frac{\hbar c}{2}\left[\gamma^{0} \vec{\gamma} \cdot \vec{p}+\gamma^{0} m c, \vec{\Sigma}\right]
$$

- once again, consider in component/index notation

$$
\left[H, S^{i}\right]=\frac{\hbar c}{2}\left[\gamma^{0} \delta_{a b} \gamma^{a} p^{b}+\gamma^{0} m c, \Sigma^{i}\right]
$$

- which part doesn't commute?

$$
\left.\begin{array}{ll}
\frac{\hbar c}{2} \delta_{a b} p^{b}\left[\gamma^{0} \gamma^{a}, \Sigma^{i}\right] & {[A B, C]=[A, C] B+A[B, C]} \\
\frac{\hbar c}{2} \delta_{a b} p^{b} \gamma^{0}\left[\gamma^{a}, \Sigma^{i}\right] & {\left[\left(\begin{array}{cc}
0 & \sigma^{a} \\
-\sigma^{a} & 0
\end{array}\right),\left(\begin{array}{cc}
\sigma^{i} & 0 \\
0 & \sigma^{i}
\end{array}\right)\right]} \\
& \left(\begin{array}{cc}
0 & {\left[\sigma_{a}, \sigma_{i}\right]} \\
-\left[\sigma^{a}, \sigma_{i}\right] & 0
\end{array}\right) \quad \epsilon_{a i j}\left(\begin{array}{cc}
0 & \sigma_{j} \\
-\sigma^{j} & 0
\end{array}\right)
\end{array} \epsilon_{a i j} \gamma^{j}\right)
$$

The "total" spin operator:

- Define the operator:

$$
\mathbf{S}^{2}=\mathbf{S} \cdot \mathbf{S} \quad \mathbf{S}=\frac{\hbar}{2} \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\sigma & 0 \\
0 & \sigma
\end{array}\right)
$$

- Calculate its eigenvalue for an arbitrary Dirac spinor:
- If the eigenvalue of the operator gives $s(s+1)$, where s is the spin, what is the spin of a Dirac particle?

NEXT TIME

- Please turn in problem set 1 by 1600 on Thursday (6 Oct)
- Please read Chapter 5

