H. A. TANAKA, PHYSICS 489/1489

LECTURE 6:

THE DIRAC EQUATION

RELATIVISTIC WAVE EQUATIONS:

- In non-relativistic quantum mechanics, we have the Schrödinger Equation:

$$
\begin{gathered}
\mathbf{H} \psi=i \hbar \frac{\partial}{\partial t} \psi \quad \mathbf{H}=\frac{\mathbf{p}^{2}}{2 m} \quad \mathbf{p} \Leftrightarrow-i \hbar \nabla \\
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=i \hbar \frac{\partial}{\partial t} \psi
\end{gathered}
$$

- Inspired by this, Klein and Gordon (and actually Schrödinger) tried:

$$
\begin{gathered}
E^{2}=p^{2} c^{2}+m^{2} c^{4}=c^{2}\left(-\hbar^{2} \nabla^{2}+m^{2} c^{2}\right) \psi=-\hbar^{2} \frac{\partial^{2}}{\partial t^{2}} \psi \\
\left(-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}+\nabla^{2}\right) \psi=\frac{m^{2} c^{2}}{\hbar^{2}} \psi
\end{gathered}
$$

$$
\partial_{\mu}=\left(\partial_{0}, \partial_{1}, \partial_{2}, \partial_{3}\right)=\left(\frac{\partial}{\partial c t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \quad\left(-\hbar^{2} \partial^{\mu} \partial_{\mu}+m^{2} c^{2}\right) \psi=0
$$

ISSUES WITH KG AND DIRAC:

- Within the context of quantum mechanics, this had some issues:
- As it turns out, this allows negative probability densities:
- Dirac traced this to the fact that we had second-order time derivative
- "factor" the E/p relation to get linear relations and obtained:

$$
p_{\mu} p^{\mu}-m^{2} c^{2}=0 \Rightarrow\left(\alpha^{\kappa} p_{\kappa}+m c\right)\left(\gamma^{\lambda} p_{\lambda}-m c\right)
$$

- and found that:

$$
\begin{aligned}
& \alpha^{\kappa}=\gamma^{\kappa} \\
& \left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}
\end{aligned}
$$

- Dirac found that these relationships could be obtained by matrices, and that the corresponding wave function must be a "vector".

$$
\gamma^{\mu} p_{\mu}-m c=0 \Rightarrow\left(i \hbar \gamma^{\mu} \partial_{\mu}-m c\right) \psi=0
$$

THE DIRAC EQUATION IN ITS

 MANY FORMS:$(i \hbar \not \partial-m c) \psi=0 \quad \not \subset \equiv a_{\mu} \gamma^{\mu}$

$$
\begin{aligned}
\left(i \hbar \gamma^{\mu} \partial_{\mu}-m c\right) \psi=0 \quad & \phi \equiv a_{\mu} \gamma^{\mu}=a_{0} \gamma^{0}-a_{1} \gamma^{1}-a_{2} \gamma^{2}-a_{3} \gamma^{3} \\
& \partial_{\mu}=\left(\partial_{0}, \partial_{1}, \partial_{2}, \partial_{3}\right)=\left(\frac{\partial}{\partial c t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)
\end{aligned}
$$

$$
\left[i \hbar\left(\gamma^{0} \partial_{0}-\gamma^{1} \partial_{1}-\gamma^{2} \partial_{2}-\gamma^{3} \partial_{3}\right)-m c\right] \psi=0
$$

$$
\left[i \hbar\left(\gamma^{0} \frac{\partial}{\partial c t}-\gamma^{1} \frac{\partial}{\partial x}-\gamma^{2} \frac{\partial}{\partial y}-\gamma^{3} \frac{\partial}{\partial z}\right)-m c\right] \psi=0
$$

NOW THE "GAMMA" MATRICES:

$$
\gamma^{\mu}=\left(\gamma^{0}, \gamma^{1}, \gamma^{2}, \gamma^{3}\right) \quad \vec{\sigma}=\left(\sigma^{1}, \sigma^{2}, \sigma^{3}\right)=\left[\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right]
$$

$$
\gamma^{0}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Note that this is a particular

$$
\gamma^{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$ representation of the matrices

$$
=\left(\begin{array}{cc}
0 & \sigma^{1} \\
-\sigma^{1} & 0
\end{array}\right)
$$

- Any set of matrices satisfying the anti-commutation relations works

$$
\gamma^{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right)
$$

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}
$$

- There are an infinite number of possibilities: this particular one (Björken-Drell) is just one example

IN FULL GLORY:

$$
\begin{aligned}
& \begin{array}{c}
{\left[i \hbar\left(\begin{array}{cccc}
\frac{\partial}{\partial \epsilon t} & 0 & -\frac{\partial}{\partial z} & -\frac{\partial}{\partial x}+i \frac{\partial}{\partial y} \\
0 & \frac{\partial}{\partial t} & -\frac{\partial}{\partial x}-i \frac{\partial}{\partial y} & 0 \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial x}-i \frac{\partial}{\partial y} & -\frac{\partial}{\partial t} & 0 \\
\frac{\partial}{\partial x}+i \frac{\partial}{\partial y} & -\frac{\partial}{\partial z} & 0 & -\frac{\partial}{\partial t}
\end{array}\right)-\left(\begin{array}{cccc}
m c & 0 & 0 & 0 \\
0 & m c & 0 & 0 \\
0 & 0 & m c & 0 \\
0 & 0 & 0 & m c
\end{array}\right)\right]\left(\begin{array}{l}
\psi_{A} \\
\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)=\binom{0}{\psi_{B}} \\
p_{\mu} \Leftrightarrow i \hbar \partial_{\mu} \\
0 \\
0
\end{array}\right)}
\end{array} \\
& \left(\begin{array}{cc}
p_{0}-m c & -\mathbf{p} \cdot \sigma \\
\mathbf{p} \cdot \sigma & -p_{0}-m c
\end{array}\right)\binom{\psi_{A}}{\psi_{B}}=0
\end{aligned}
$$

Consider applying another matrix to this equation

$$
\begin{aligned}
& \left(\begin{array}{cc}
p_{0}+m c & -\mathbf{p} \cdot \sigma \\
\mathbf{p} \cdot \sigma & -p_{0}+m c
\end{array}\right)\left(\begin{array}{cc}
p_{0}-m c & -\mathbf{p} \cdot \sigma \\
\mathbf{p} \cdot \sigma & -p_{0}-m c
\end{array}\right)=\left(\begin{array}{cc}
p_{0}^{2}-m^{2} c^{2}-(\mathbf{p} \cdot \sigma)^{2} & p_{0}^{2}-m^{2} c^{2}-(\mathbf{p} \cdot \sigma)^{2}
\end{array}\right) \\
& (\sigma \cdot \mathbf{a})(\sigma \cdot \mathbf{b})=\mathbf{a} \cdot \mathbf{b}+i \sigma \cdot(\mathbf{a} \times \mathbf{b}) \quad(\sigma \cdot \mathbf{p})^{2}=\mathbf{p} \cdot \mathbf{p}
\end{aligned}
$$

- this is just the KG equation four times

$$
\left(\begin{array}{cc}
p_{0}^{2}-\mathbf{p}^{2}-m^{2} c^{2} & 0 \\
0 & p_{0}^{2}-\mathbf{p}^{2}-m^{2} c^{2}
\end{array}\right)\binom{\psi_{A}}{\psi_{B}}=0
$$

- Wavefunctions that satisfy the Dirac equation also satisfy KG

SOLUTIONS TO THE DIRAC EQUATION:

$$
k^{\mu}=\frac{1}{\hbar}\left(E / c, p_{x}, p_{y}, p_{z}\right)
$$

- Consider a particle at rest: $\psi(x) \sim e^{-i k \cdot x}=e^{\frac{-i}{\hbar}\left(\frac{E}{c} t-\mathbf{p} \cdot \mathbf{x}\right)}$
- Particle has no spatial dependence, only time dependence.

$$
\begin{aligned}
& \left(i \hbar \gamma^{0} \frac{\partial}{\partial c t}-m c\right) \psi=0 \\
& \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\frac{\partial}{\partial t} \psi_{A}}{\frac{\partial}{\partial t} \psi_{B}}=\frac{-i m c^{2}}{\hbar}\binom{\psi_{A}}{\psi_{B}}
\end{aligned}
$$

- Note that the equation breaks up into two independent parts:

$$
\begin{array}{rlrl}
\frac{\partial}{\partial t} \psi_{A} & =-i \frac{m c^{2}}{\hbar} \psi_{A} & -\frac{\partial}{\partial t} \psi_{B} & =-i \frac{m c^{2}}{\hbar} \psi_{B} \\
\psi_{A}(t) & =e^{-i\left(\frac{m c^{2}}{\hbar}\right) t} \psi_{A}(0) & \psi_{B}(t)=e^{-i\left(-\frac{m c^{2}}{\hbar}\right) t} \psi_{B}(0)
\end{array}
$$

DIRAC'S DILEMMA:

- ψ_{B} appears to have negative energy

$$
\psi_{A}(t)=e^{-i\left(\frac{m c^{2}}{\hbar}\right) t} \psi_{A}(0) \quad \psi_{B}(t)=e^{-i\left(-\frac{m c^{2}}{\hbar}\right) t} \psi_{B}(0)
$$

-Why don't all particles fall down into these states (and down to $-\infty$)?

- Dirac's excuse: all electron states in the universe up to a certain level (say $E=0$) are filled.
- Pauli exclusion prevents collapse of states down to $E=-\infty$
- We can "excite" particles out of the sea into free states This leaves a "hole" that looks like a particle with opposite properties (positive charge, opposite spin, etc.

Dirac originally proposed that this might be the proton

EXCUSE TO TRIUMPH

- 1932: Anderson finds "positrons" in cosmic rays
- Exactly like electrons but positively charged:

Fits what Dirac was looking for

Dirac predicts the existence of anti-matter and it is found

$$
\square
$$

SOLUTIONS TO THE DIRAC EQUATION AT REST:

$$
\begin{array}{|ll}
\psi_{1}(t)=e^{-i m c^{2} t / \hbar}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) & \psi_{2}(t)=e^{-i m c^{2} t / \hbar}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
\text { "spin up" } & \text { "spin down" }
\end{array}
$$

positive energy solutions (particle)

$$
\left.\begin{array}{cc}
\psi_{3}(t)=e^{+i m c^{2} t / \hbar}\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \quad \psi_{4}(t)=e^{+i m c^{2} t / \hbar}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) . \quad \text { "spin up" down" }
\end{array}\right)
$$

"negative" energy solutions (anti-particle)

- Note that all particles have the same mass

PEDAGOGICAL SORE POINT

- All the discussion we had thus far about difficulties with relativistic equations, (negative probabilities, negative energies) is of historic interest
- Scientifically, the framework for dealing with quantum mechanics and special relativity (i.e. quantum field theory) had not been developed
- The old tools of NR quantum mechanics had reached their limit and new ones were necessary.
- In particular, the idea of a "wavefunction" had to be revisited
- Until this was done, there were many difficulties!
- Once OFT was developed, all of these problems go away.
- Both KG and Dirac Equations are valid in OFT
- No negative probabilities, no negative energies
- Nonetheless, the history and its course are rather interesting.

LORENTZ PROPERTIES:

- The Dirac equation "works" in all reference frames.
- What exactly does this mean?

$$
i \hbar \gamma^{\mu} \partial_{\mu} \psi-m c \psi=0 \quad \text { "Lorentz Covariant" }
$$

- $\mathrm{i}, \hbar, \mathrm{m}, \gamma$, and c are constants that don't change with reference frames.
- ∂_{μ} and ψ will change with reference frames, however.
- ∂_{μ} is a derivative that will be taken with respect to the space-time coordinates in the new reference frame. We'll call this ∂_{μ}^{\prime}
- how does ψ change?
- $\psi^{\prime}=S \psi$ where ψ^{\prime} is the spinor in the new reference frame
- Putting this together, we have the following transformation of the equation when evaluating it in a new reference frame

$$
i \hbar \gamma^{\mu} \partial_{\mu} \psi-m c \psi=0 \quad \Rightarrow \quad i \hbar \gamma^{\mu} \partial_{\mu}^{\prime} \psi^{\prime}-m c \psi^{\prime}=0
$$

What properties does S need to

$$
i \hbar \gamma^{\mu} \partial_{\mu}^{\prime}(S \psi)-m c(S \psi)=0
$$

TRANSFORMING THE DIRAC EQUATION:

$$
\begin{aligned}
& i \hbar \gamma^{\mu} \partial_{\mu} \psi-m c \psi=0 \quad i \hbar \gamma^{\mu} \partial_{\mu}^{\prime} \psi^{\prime}-m c \psi^{\prime}=0 \\
& i \hbar \gamma^{\mu} \partial_{\mu}^{\prime}(S \psi)-m c(S \psi)=0 \\
& i \hbar \gamma^{\mu} \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}} \partial_{\nu}(S \psi)-m c(S \psi)=0 \\
& \text { S is constant in space time, so we can } \\
& \text { move it to the left of the derivatives } \\
& i \hbar \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}} \partial_{\nu} \psi-m c(S \psi)=0 \\
& i \hbar \gamma^{\nu} \partial_{\nu} \psi-m c \psi=0 \text { Now slap } S^{-1} \text { from both sides } \\
& S^{-1} \rightarrow i \hbar \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}} \partial_{\nu} \psi-m c S \psi=0
\end{aligned}
$$

Since these equations must be the same, S must satisfy

$$
\gamma^{\nu}=S^{-1} \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}}
$$

EXAMPLE: THE PARITY OPERATOR

- For the parity operator, we want to invert the spatial coordinates while keeping the time coordinate unchanged:
$P=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right) \quad \begin{array}{ll}\frac{\partial x_{0}}{\partial x_{0}{ }^{\prime}}=1 \\ \frac{\partial x_{2}}{\partial x_{2}{ }^{\prime}}=-1 & \frac{\partial x_{1}}{\partial x_{1}{ }^{\prime}}=-1 \\ \frac{\partial x_{3}}{\partial x_{3^{\prime}}}=-1\end{array}$
- We then have

$$
\begin{aligned}
& \gamma^{0}=S^{-1} \gamma^{0} S \\
& \gamma^{1}=-S^{-1} \gamma^{1} S \\
& \gamma^{2}=-S^{-1} \gamma^{2} S \\
& \gamma^{3}=-S^{-1} \gamma^{3} S
\end{aligned}
$$

Recalling

$$
\begin{aligned}
& \gamma^{\nu}=S^{-1} \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu \prime}} \\
& \gamma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \left(\gamma^{0}\right)^{2}=1
\end{aligned}
$$

We find that γ^{0} satisfies our needs

$$
\begin{aligned}
& \gamma^{0}=\gamma^{0} \gamma^{0} \gamma^{0}=\gamma^{0} \\
& \gamma^{i}=-\gamma^{0} \gamma^{i} \gamma^{0}=\gamma^{0} \gamma^{0} \gamma^{i}=\gamma^{i}
\end{aligned}
$$

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \Rightarrow \gamma^{0} \gamma^{i}=-\gamma^{i} \gamma^{0} \quad S_{P}=\gamma^{0}
$$

LORENTZ COVARIANT QUANTITIES

- Recall that for four vectors a^{μ}, b^{μ}
- a^{μ}, b^{μ} transform as Lorentz vectors (obviously)
- $a^{4} b_{\mu}$ is a scalar (does not change under Lorentz transformations
- $a^{\mu} b^{v}$ is a tensor (each has a Lorentz transformation)
- From the previous discussion, we know:
- Dirac spinors have four components, but don't transform as Lorentz vectors
- How do combinations of Dirac spinors change under Lorentz Transformations?

HOW DO WE CONSTRUCT A SCALAR?

- We can use γ^{0} : define: $\bar{\psi}=\psi^{\dagger} \gamma^{0}$
- Consider a Lorentz transformation with S acting on the spinor
- We can also show generally that $S^{\dagger} \gamma^{0} S=\gamma^{0}$
- This gives us $\bar{\psi} \psi \Rightarrow \psi^{\dagger} S^{\dagger} \gamma^{0} S \psi=\psi^{\dagger} \gamma^{0} \psi=\bar{\psi} \psi$
- so this is a Lorentz invariant
- We can construct the parity operator to check how $\bar{\psi} \psi$ transforms under the parity operation.
- Recall $S_{p}=\gamma^{0}$
- We can investigate how $\bar{\psi} \psi$ transforms under parity

$$
\bar{\psi} \psi \Rightarrow\left(\psi^{\dagger} S_{P}^{\dagger} \gamma^{0}\right)\left(S_{P} \psi\right)=\psi^{\dagger} \gamma^{0} \gamma^{0} \gamma^{0} \psi=\psi^{\dagger} \gamma^{0} \psi=\bar{\psi} \psi
$$

$\bar{\psi} \psi$ doesn't change sign under parity it is a Lorentz scalar

THE γ^{5} OPERATOR

- Define the operator γ^{5} as:

$$
\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}
$$

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- It anticommutes with all the other γ matrices:

$$
\left\{\gamma^{\mu}, \gamma^{5}\right\}=0
$$

- use the canonical anti-commutation relations to move γ^{μ} to the other side
- γ^{4} will anti-commute with for $\mu \neq v$
- $\gamma^{\text {II }}$ will commute when $\mu=v$
- We can then consider the quantity $\bar{\psi} \gamma^{5} \psi$
- Can show that this is invariant under Loretnz transformation.
- What about under parity?
$\bar{\psi} \gamma^{5} \psi \Rightarrow\left(\psi^{\dagger} S_{P}^{\dagger}\right) \gamma^{0} \gamma^{5}\left(S_{P} \psi\right)=-\left(\psi^{\dagger} S_{P}^{\dagger}\right) \gamma^{0} S_{P} \gamma^{5} \psi=-\psi^{\dagger} \gamma^{0} \gamma^{5} \psi=-\bar{\psi} \gamma^{5} \psi$
$\bar{\psi} \gamma^{5} \psi$ is a "pseudoscalar"

OTHER COMBINATIONS

- We can use γ^{μ} to make vectors and tensor quantities:
$\bar{\psi} \psi \quad$ scalar
$\bar{\psi} \gamma^{5} \psi \quad$ pseudoscalar
$\bar{\psi} \gamma^{\mu} \psi \quad$ vector
$\bar{\psi} \gamma^{\mu} \gamma^{5} \psi \quad$ pseudovector
$\bar{\psi} \sigma^{\mu \nu} \psi \quad$ antisymmetric tensor

1 component
1 component
4 components
4 components
6 components $\quad \sigma^{\mu \nu}=\frac{i}{2}\left(\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu} \gamma^{\mu}\right)$

- You can tell the transformation properties by looking at the Lorentz indices
- γ^{5} introduces a sign (adds a "pseudo")
- Every combination of $\psi^{*}{ }_{i} \psi_{\mathrm{j}}$ is a linear combination of the above.
- We will see that the above are the basis for creating interactions with Dirac particles. Interactions will be classified as "vector" or "pseudovector", etc.

NEXT TIME:

- Please read 4.6-4.9
- I will not be in class on Thursday
- Randy has kindly agreed to work out a phase space calculation
- It would also be a good opportunity to ask questions, etc.

