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R E L AT I V I S T I C  W AV E  E Q U AT I O N S :

• In non-relativistic quantum mechanics, we have the Schrödinger Equation: 

• Inspired by this, Klein and Gordon (and actually Schrödinger) tried:
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I S S U E S  W I T H  K G  A N D  D I R A C :
• Within the context of quantum mechanics, this had some issues: 

• As it turns out, this allows negative probability densities: 

• Dirac traced this to the fact that we had second-order time derivative 

• “factor” the E/p relation to get linear relations and obtained: 

• and found that:  

• Dirac found that these relationships could be obtained by matrices, 
and that the corresponding wave function must be a “vector”.
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T H E  D I R A C  E Q U AT I O N  I N  I T S  
M A N Y  F O R M S :
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N O W  T H E  “ G A M M A ”  M AT R I C E S :

• Note that this is a particular 
representation of the matrices 

• Any set of matrices satisfying 
the anti-commutation relations 
works 

• There are an infinite number of 
possibilities: this particular one 
(Björken-Drell) is just one 
example
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I N  F U L L  G L O R Y:
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• this is just the KG equation four times


• Wavefunctions that satisfy the 
Dirac equation also satisfy KG 



S O L U T I O N S  T O  T H E  D I R A C  E Q U AT I O N :

• Consider a particle at rest: 

• Particle has no spatial dependence, only time dependence. 

• Note that the equation breaks up into two independent parts:
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D I R A C ’ S  D I L E M M A :
• ψB appears to have negative energy 

• Why don’t all particles fall down into these states (and down to -∞)? 

• Dirac’s excuse: all electron states in the universe up to a certain level (say 
E=0) are filled. 

• Pauli exclusion prevents collapse 

of states down to E = -∞ 

• We can “excite” particles out  
of the sea into free states 
This leaves a “hole” that looks like 
a particle with opposite properties 
(positive charge, opposite spin, etc.)
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Dirac originally proposed that this might be the proton



E X C U S E  T O  T R I U M P H

• 1932: Anderson finds “positrons” 

in cosmic rays 

• Exactly like electrons but  

positively charged:  

Fits what Dirac was looking for

Dirac predicts the existence 
of anti-matter and it is found





S O L U T I O N S  T O  T H E  D I R A C  E Q U AT I O N  AT  R E S T:

• Note that all particles have the same mass
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positive energy solutions (particle)
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“spin up” “spin down”

“spin down” “spin up”



P E D A G O G I C A L  S O R E  P O I N T
• All the discussion we had thus far about difficulties with relativistic 

equations, (negative probabilities, negative energies) is of historic interest  

• Scientifically, the framework for dealing with quantum mechanics and 
special relativity (i.e. quantum field theory) had not been developed 

• The old tools of NR quantum mechanics had reached their limit and new ones 
were necessary. 

• In particular, the idea of a “wavefunction” had to be revisited 

• Until this was done, there were many difficulties! 

• Once QFT was developed, all of these problems go away. 

• Both KG and Dirac Equations are valid in QFT 

• No negative probabilities, no negative energies 

• Nonetheless, the history and its course are rather interesting.



L O R E N T Z  P R O P E R T I E S :
• The Dirac equation “works” in all reference frames. 

•  What exactly does this mean? 

• i, ħ, m, γ, and c are constants that don’t change with reference frames. 

• ∂µ and ψ will change with reference frames, however. 
• ∂µ is a derivative that will be taken with respect to the space-time 

coordinates in the new reference frame. We’ll call this ∂’µ

• how does ψ change? 

• ψ’ = Sψ where ψ’ is the spinor in the new reference frame

•  Putting this together, we have the following transformation of the 
equation when evaluating it in a new reference frame
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“Lorentz Covariant”



T R A N S F O R M I N G  T H E  D I R A C  E Q U AT I O N :
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E X A M P L E :  T H E  PA R I T Y  O P E R AT O R

• For the parity operator, we want to invert the spatial coordinates 
while keeping the time coordinate unchanged: 

• We then have
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L O R E N T Z  C O VA R I A N T  Q U A N T I T I E S

• Recall that for four vectors aµ, bµ 

• aµ, bµ transform as Lorentz vectors (obviously) 

• aµbµ is a scalar (does not change under Lorentz 
transformations 

• aµbν is a tensor (each has a Lorentz transformation) 

• From the previous discussion, we know: 

• Dirac spinors have four components, but don’t transform as 
Lorentz vectors 

• How do combinations of Dirac spinors change under Lorentz 
Transformations?



H O W  D O  W E  C O N S T R U C T  A  S C A L A R ?

• We can use γ0: define: 

• Consider a Lorentz transformation with S acting on the spinor 

• We can also show generally that 

• This gives us 

• so this is a Lorentz invariant 

• We can construct the parity operator to check how       transforms 
under the parity operation. 

• Recall SP = γ0

• We can investigate how       transforms under parity
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T H E  γ 5  O P E R AT O R

• Define the operator γ5
 as: 

• It anticommutes with all the other γ matrices: 

• use the canonical anti-commutation relations to move γµ to the other side 

• γµ will anti-commute with for µ≠ν 

• γµ will commute when µ=ν 

• We can then consider the quantity 

• Can show that this is invariant under Loretnz transformation. 

• What about under parity?
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O T H E R  C O M B I N AT I O N S

• We can use γµ to make vectors and tensor quantities: 

• You can tell the transformation properties by looking at the Lorentz 
indices 

• γ5 introduces a sign (adds a “pseudo”) 

• Every combination of ψ*
iψj is a linear combination of the above. 

• We will see that the above are the basis for creating interactions with 
Dirac particles. Interactions will be classified as “vector” or 
“pseudovector”, etc.

⇤̄⇤ scalar 1 component
⇤̄�5⇤ pseudoscalar 1 component
⇤̄�µ⇤ vector 4 components
⇤̄�µ�5⇤ pseudovector 4 components
⇤̄⇥µ⇥⇤ antisymmetric tensor 6 components ⇥µ⇥ =

i

2
(�µ�⇥ � �⇥�µ)



N E X T  T I M E :

• Please read 4.6-4.9 

• I will not be in class on Thursday 

• Randy has kindly agreed to work out a phase space 
calculation 

• It would also be a good opportunity to ask questions, etc.


