H. A. TANAKA: PHY 489/1489

LECTURE 4:
PHASE SPACE IN DECAYS

## GOLDEN RULE

- Fermi's golden rule states that the probability of a transition in quantum mechanics is given by the product of:
- The absolute value of the matrix element (a $k$ a amplitude) squared
- The available density of states.

$$
P \propto|\mathcal{M}|^{2} \times \rho
$$


$P \propto|\mathcal{M}|^{2} \quad P \propto 2 \times|\mathcal{M}|^{2}$

$P \propto \int|\mathcal{M}(E)|^{2} \rho(E) d E$

- Typically a decay of a particle into states with lighter product masses has more "phase space" and more likely to occur.
- Let's see how to calculate the phase space
- we'll learn how to calculate amplitudes later.


## PRODUCT OF PHASE SPACE

## Initial State



- What is net phase space for the particle $1,2,3$ to end up in particular places?
- 0 if energy and momentum are not conserved
- 0 if particles are not on "mass shell"
- Otherwise, the product of the individual phase spaces:

$$
\rho=\rho_{1}\left(p_{1}^{\mu}\right) \times \rho_{2}\left(p_{2}^{\mu}\right) \times \rho_{3}\left(p_{3}^{\mu}\right)
$$

integral extends over region satisfying kinematic constraints

$$
\rho_{\text {tot }}=\int_{\text {allowed }} \frac{d^{4} p_{1}}{(2 \pi)^{4}} \frac{d^{4} p_{2}}{(2 \pi)^{4}} \frac{d^{4} p_{3}}{(2 \pi)^{4}} \rho_{1}\left(p_{1}^{\mu}\right) \rho_{2}\left(p_{2}^{\mu}\right) \rho_{3}\left(p_{3}^{\mu}\right)
$$

## PHASE SPACE IN DECAYS

Symmetry factor
$\downarrow$

Product over all
outgoing particles $\prod_{j=2}^{\downarrow}$

Energy must be

## positive

 $\downarrow$Matrix element factor (function of kinematics, polarizations, etc.)

Energy and momentum must be conserved

- Complicating looking, but represents a basic statement:
- apart from matrix element, phase space is distributed evenly among all particles subject to mass requirements, E/p conservation
- "dynamics" like parity violation, etc. incorporated into matrix element.


## THE SYMMETRY FACTOR:

- Consider the integration of phase space for two particles in the final state where the particles are of the same species.

$$
\int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \frac{d^{4} p_{2}}{(2 \pi)^{4}}
$$

- At some point, say, there will be a configuration where $p_{1}=K_{1}$ and $p_{2}=K_{2}$
- Since the particles are identical, we should also have the reverse case:
- $p_{1}=K_{2}, p_{2}=K_{1}$
- the integral will contain both cases separately.
- However, in quantum mechanics, the identicalness of particles of the same species means that these are the same state and we have double counted.
- We need to add a factor of $1 / 2$ to the phase space
- Likewise, for $n$ identical particles in the final state, we need a factor of $1 / n$ !


## THE GOLDEN RULE: 2-BODY DECAY

$\Gamma=\frac{S}{2 \hbar m_{1}} \times \int|\mathcal{M}|^{2} \times(2 \pi)^{4} \delta^{4}\left(p_{1}-p_{2}-p_{3}\right)$

$$
\times(2 \pi) \cdot \delta\left(p_{2}^{2}-m_{2}^{2} c^{2}\right) \Theta\left(p_{2}^{0}\right) \times(2 \pi) \cdot \delta\left(p_{3}^{2}-m_{3}^{2} c^{2}\right) \Theta\left(p_{3}^{0}\right)
$$

$$
\frac{d^{4} p_{2}}{(2 \pi)^{4}} \frac{d^{4} p_{3}}{(2 \pi)^{4}}
$$

Let's integrate over overall outgoing particle phase space to get the total decay rate

- Start with the phase space factors: $d^{4} p \equiv d p^{0} d p^{1} d p^{2} d p^{3}$

$$
\begin{aligned}
& \delta\left(p^{2}-m^{2} c^{2}\right)=\delta\left(\left(p^{0}\right)^{2}-\vec{p}^{2}-m^{2} c^{2}\right) \\
& \delta\left(p^{2}-m^{2} c^{2}\right)=\frac{1}{2 \times \sqrt{\vec{p}^{2}+m^{2} c^{2}}}\left[\delta\left(p^{0}-\sqrt{\vec{p}^{2}+m^{2} c^{2}}\right)+\delta\left(p^{0}+\sqrt{\vec{p}^{2}+m^{2} c^{2}}\right)\right]
\end{aligned}
$$

- Ignore the $2 n d \delta$ function since $\Theta\left(p^{0}\right)$ will be 0 whenever $p^{0}$ is negative

$$
\begin{aligned}
\delta\left(p^{2}-m^{2} c^{2}\right)= & \frac{1}{2 \times \sqrt{\vec{p}^{2}+m^{2} c^{2}}} \delta\left(p^{0}-\sqrt{\vec{p}^{2}+m^{2} c^{2}}\right) \\
& p_{0} \Rightarrow \sqrt{\vec{p}^{2}+m^{2} c^{2}}
\end{aligned}
$$

## ENFORCING ENERGY/MOMENTUM CONSERVATION

- Now integrate over $\mathrm{P}^{0}$ and $\mathrm{p}_{2}{ }_{2}$ using the previous relations

$$
\begin{aligned}
& \Gamma=\frac{S}{2 \hbar m_{1}} \times \int|\mathcal{M}|^{2} \times(2 \pi)^{4} \delta^{4}\left(p_{1}^{\mu}-p_{2}^{\mu}-p_{3}^{\mu}\right) \\
& \times 2 \pi \times \delta\left(p_{2}^{2}-m_{2}^{2} c^{2}\right) \Theta\left(p_{2}^{0}\right) \times 2 \pi \times \delta\left(p_{3}^{2}-m_{3}^{2} c^{2}\right) \Theta\left(p_{3}^{0}\right) \\
& \frac{d^{3} \vec{p}_{2}}{(2 \pi)^{3}} \frac{d^{3} \vec{p}_{3}}{(2 \pi)^{3}} \frac{X p_{2}^{0}}{(2 \pi \chi} \frac{\chi_{2}^{0}}{(2 \pi \chi)} \\
& \frac{1}{2 \times \sqrt{{\overrightarrow{p_{2}}}^{2}+m_{2}^{2} c^{2}}} \\
& \frac{1}{2 \times \sqrt{\overrightarrow{p_{3}}{ }^{2}+m_{3}^{2} c^{2}}}
\end{aligned}
$$

note $\mathrm{p}^{0}$ and $\mathrm{p}_{3}$ are now set according to $E / p$ conservation by the $\delta$ function

$$
\Gamma=\frac{S}{32 \pi^{2} \hbar m_{1}} \times \int|\mathcal{M}|^{2} \times \frac{\delta^{4}\left(p_{1}^{\mu}-p_{2}^{\mu}-p_{3}^{\mu}\right)}{\sqrt{\vec{p}_{2}^{2}+m_{2}^{2} c^{2}} \sqrt{\vec{p}_{3}^{2}+m_{3}^{2} c^{2}}} d^{3} \vec{p}_{2} d^{3} \vec{p}_{3}
$$

## DECAY AT REST:

- Decompose the product delta function (particle 1 at rest)

$$
\delta^{4}\left(p_{1}^{\mu}-p_{2}^{\mu}-p_{3}^{\mu}\right) \Rightarrow \delta\left(m_{1} c-\sqrt{\vec{p}_{2}^{2}+m_{2}^{2} c^{2}}-\sqrt{\vec{p}_{3}^{2}+m_{3}^{2}}\right) \delta^{3}\left(-\vec{p}_{2}-\vec{p}_{3}\right)
$$

- Perform the $d^{3} p_{3}$ integral

$$
\begin{gathered}
\Gamma=\frac{S}{32 \pi^{2} \hbar m_{1}} \times \int|\mathcal{M}|^{2} \times \frac{\delta^{4}\left(p_{1}^{\mu}-p_{2}^{\mu}-p_{3}^{\mu}\right)}{\sqrt{\vec{p}_{2}^{2}+m_{2}^{2} c^{2}} \sqrt{\vec{p}_{3}^{2}+m_{3}^{2} c^{2}}} d^{3} \vec{p}_{2} d \overrightarrow{\mathrm{k}}_{3} \\
\downarrow \\
\sqrt{{\overrightarrow{p_{2}^{2}}}^{2}+m_{3}^{2} c^{2}} \\
\Gamma=\frac{S}{32 \pi^{2} \hbar m_{1}} \times \int|\mathcal{M}|^{2} \times \frac{\delta\left(m_{1} c-\sqrt{\vec{p}_{2}^{2}+m_{2}^{2} c^{2}}-\sqrt{\vec{p}_{2}^{2}+m_{3}^{2} c^{2}}\right)}{\sqrt{\vec{p}_{2}^{2}+m_{2}^{2} c^{2}} \sqrt{\vec{p}_{2}^{2}+m_{3}^{2} c^{2}}} d^{3} \vec{p}_{2}
\end{gathered}
$$

## INTEGRAL IN SPHERICAL COORDINATES

$$
\begin{gathered}
d^{3} \vec{p}_{2} \Rightarrow d \phi d \cos \theta\left|p_{2}\right|^{2} d p_{2} \quad \text { Assume no dependence of } M \text { on } p \\
\Gamma=\frac{S}{32 \pi^{2} \hbar m_{1}} \times \int d \phi d \cos \theta\left|\mathbf{p}_{2}\right|^{2} d\left|\mathbf{p}_{2}\right||\mathcal{M}|^{2} \times \frac{\delta\left(m_{1} c-\sqrt{\mathbf{p}_{2}^{2}+m_{2}^{2} c^{2}}-\sqrt{\mathbf{p}_{2}^{2}+m_{3}^{2} c^{2}}\right)}{\sqrt{\mathbf{p}_{2}^{2}+m_{2}^{2} c^{2}} \sqrt{\mathbf{p}_{2}^{2}+m_{3}^{2} c^{2}}} \\
\int_{0}^{2 \pi} d \phi \rightarrow 2 \pi \quad \int_{-1}^{+1} d \cos \theta \rightarrow 2 \\
u=\sqrt{\mathbf{p}_{2}^{2}+m_{2}^{2} c^{2}}+\sqrt{\mathbf{p}_{2}^{2}+m_{3}^{2} c^{2}} \\
d u=\frac{u\left|\mathbf{p}_{2}\right|}{\sqrt{\mathbf{p}_{2}^{2}+m_{2}^{2} c^{2}} \sqrt{\mathbf{p}_{2}^{2}+m_{3}^{2} c^{2}}} d\left|\mathbf{p}_{2}\right| \\
\Gamma=\frac{S}{8 \pi \hbar m_{1}} \times \int_{p_{2}=0, u=m_{2}+m_{3}}^{\infty} d u|\mathcal{M}|^{2} \times \delta\left(m_{1} c-u\right) \frac{\left|\mathbf{p}_{2}\right|}{u}
\end{gathered}
$$

The final integral over $u$ sends $u=m_{1} c$ and makes $p_{2}$ consistent with E conservation

FINAL RESULT: TOTAL TWO-BODY DECAY RATE:

$$
\Gamma=\frac{S}{8 \pi \hbar m_{1}^{2} c} \times|\mathcal{M}|^{2} \times\left|\vec{p}_{2}\right|
$$

- We now need to be able to calculate the matrix element $M$
- We'll use Feynman diagrams and the associated calculus to calculate amplitudes for various elementary processes


## SUMMARY

- Please read 4.1-4.5 for next time

