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G O L D E N  R U L E
• Fermi’s golden rule states that the probability of a transition in 

quantum mechanics is given by the product of: 

• The absolute value of the matrix element (a k a amplitude) squared  

• The available density of states. 

• Typically a decay of a particle into states with lighter product masses 
has more “phase space” and more likely to occur. 

• Let’s see how to calculate the phase space  

• we’ll learn how to calculate amplitudes later.
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P R O D U C T  O F  P H A S E  S PA C E

• What is net phase space for the particle 1,2,3 to end up in particular places?  

• 0 if energy and momentum are not conserved 

• 0 if particles are not on “mass shell” 

• Otherwise, the product of the individual phase spaces:
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P H A S E  S PA C E  I N  D E C AY S

• Complicating looking, but represents a basic statement: 

• apart from matrix element, phase space is distributed evenly among 
all particles subject to mass requirements, E/p conservation 

• “dynamics” like parity violation, etc. incorporated into matrix element.
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T H E  S Y M M E T R Y  FA C T O R :
• Consider the integration of phase space for two particles in the final state 

where the particles are of the same species. 

• At some point, say, there will be a configuration where p1 = K1 and p2 = K2 

• Since the particles are identical, we should also have the reverse case: 

• p1= K2, p2 = K1 

• the integral will contain both cases separately. 

• However, in quantum mechanics, the identicalness of particles of the same 
species means that these are the same state and we have double counted. 

• We need to add a factor of 1/2 to the phase space 

• Likewise, for n identical particles in the final state, we need a factor of 1/n!
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T H E  G O L D E N  R U L E :  2 - B O D Y  D E C AY

• Start with the phase space factors: 

• Ignore the 2nd δ function since Θ(p0) will be 0 whenever p0 is negative
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Let’s integrate over overall outgoing particle 
phase space to get the total decay rate
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ENFORCING ENERGY/MOMENTUM CONSERVATION

• Now integrate over p0
3 and p0

2 using the previous relations
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D E C AY  AT  R E S T:
• Decompose the product delta function (particle 1 at rest) 

• Perform the d3p3 integral
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I N T E G R A L  I N  S P H E R I C A L  C O O R D I N AT E S

The final integral over u sends u=m1c and makes p2 
consistent with E conservation
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F I N A L  R E S U LT:  T O TA L  T W O - B O D Y  D E C AY  R AT E :

• We now need to be able to calculate the matrix 
element M 

• We’ll use Feynman diagrams and the associated calculus 
to calculate amplitudes for various elementary processes

why |p2| and 
 not |p3|?
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S U M M A R Y
• Please read 4.1-4.5 for next time


