PHYSICS 489/149

LECTURE 3: REVIEW OF QUANTUM MECHANICS

OFFICE HOURS:

- According to the doodle poll:
- Everyone can make it to either:
 - Monday at 4 pm
 - Tuesday at 4 pm
- Office hours will (usually) be held at this time

LAST TIME:

- We reviewed special relativity
 - we will mainly be interested in particle kinematics
 - energy, momentum, mass
 - importance of invariant quantities
 - pay attention to 3- vs. 4-vectors!
- Today, we move to quantum mechanics
 - review basic concepts in quantum dynamics
 - currents
 - spin and angular momentum
 - time dependent perturbation theory and scattering

BASIC QUANTUM MECHANICS

The Schrödinger Equation:

$$\hat{H}\psi = i\dot{\psi}$$
 $\hat{p} = -i\nabla$

for non-relativistic quantum mechanics

$$\hat{H} = \frac{\hat{p}^2}{2m} + \hat{V}(x) \qquad \left[-\frac{1}{2m} \nabla^2 + \hat{V} \right] \psi = i\dot{\psi}$$

Consider

$$|\psi|^2 = \psi^* \psi$$

$$\psi^* \to -\frac{1}{2m} \nabla^2 \psi = i \dot{\psi} \leftarrow \psi^* \qquad \psi \to -\frac{1}{2m} \nabla^2 \psi^* = -i \dot{\psi}^* \leftarrow \psi$$

$$-\frac{1}{2m} \left[\psi^* \nabla^2 \psi - \psi \nabla^2 \psi^* \right] = i (\psi^* \dot{\psi} + \psi \dot{\psi}^*)$$

$$-\frac{1}{2m}\nabla \cdot [\psi^*\nabla\psi - \psi\nabla\psi^*] = i\frac{\partial}{\partial t} [\psi^*\psi]$$

CONSERVED CURRENT

conserved current:

$$\nabla \cdot \mathbf{j} + \dot{\rho} = \mathbf{0}$$

Consider the previous equations:

$$-\frac{1}{2m}\nabla \cdot [\psi^*\nabla\psi - \psi\nabla\psi^*] = i\frac{\partial}{\partial t} [\psi^*\psi]$$

we can consider this a conserved current with

$$\rho = |\psi|^2 \qquad \mathbf{j} = -i\frac{1}{2m} \left[\psi^* \nabla \psi - \psi \nabla \psi^* \right]$$

corresponding to the conserved flow of particle (density)

COMMUTATORS:

- [A, B] = AB-BA
- Convince yourself:
 - [AB,C] = A[B,C] + [A,C]B
 - [A,BC] = [A,B]C + B[A,C]
- Consequences for operators that commute?
- Canonical commutation relation
 - [x,p] = i
 - If we label $(x, y, z) \rightarrow (r_1, r_2, r_3), (p_x, p_y, p_z) \rightarrow (p_1, p_2, p_3)$
 - $[r_a, p_b] = i \delta_{ab}$

ANGULAR MOMENTUM

- From classical mechanics:
 - $\mathbf{L} = \mathbf{r} \times \mathbf{p}$
 - $L_x = y p_z -z p_y \dots$
 - $\mathbf{L_i} = \mathbf{\epsilon}_{ijk} \, \mathbf{r}_j \, \mathbf{p}_k$
 - $\varepsilon_{ijk} = 0$ if any of ijk are equal
 - $\varepsilon_{ijk} = +1$ if ijk is even permutation of 123
 - $\varepsilon_{ijk} = -1$ if ijk is even permutation of 123
- From the canonical commutation relations:
 - $[L_i, L_j] = i \epsilon_{ijk} L_k$
 - $[L_x, L_y] = iL_z \dots$
 - what consequences does this have for simultaneous eigenstates?
- Usually, we choose to diagonalize in L_z

TOTAL ANGULAR MOMENTUM

- We can consider the magnitude of the angular momentum
 - $L^2 = L_x^2 + L_y^2 + L_z^2$
 - $[L^2, L_x] = 0$
- "Ladder operator": $L_{\pm} = L_{x} \pm iL_{y}$
 - $\left[L_{z}, L_{\pm} \right] = \pm L_{\pm}$
 - $L^2 = L_L + L_z + L_z^2$
- Consider an eigenstates |I,m>
 - I eigenvalue of L^2 , m eigenvalue of L_z
 - $L_z L_{\pm} |I,m\rangle = (m\pm 1) L_{\pm} |I,m\rangle$
 - $L^2 |I,m\rangle = I(I+1) |I,m\rangle$
- Representations of angular momentum
 - we can have states of total orbital angular momentum in integers
 - also half-integer states corresponding to spin (more on this later)
 - 2l+1 states corresponding for angular momentum l states.

THE PAULI MATRICES

Define the matrices:

$$S_x = \frac{\hbar}{2}\sigma_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, S_y = \frac{\hbar}{2}\sigma_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, S_z = \frac{\hbar}{2}\sigma_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- Convince yourself that:
 - they satisfy the commutation relations $[S_i, S_j] = i \epsilon_{ijk} S_k$
 - the vectors $\binom{1}{0}$, $\binom{0}{1}$ are the eigenvectors of S_z with the appropriate eigenvalues
 - operators S₊ and S₋ have the desired properties.
- all states of this system have the appropriate eigenvalue for a spin 1/2 system for the operator S².

TIME-DEPENDENT PERTURBATION

- "weakly" interacting system
 - most energy in free motion with small potential energy/interaction
 - $H = H_0 + V$
 - Assume we know eigenstates of H₀

$$H_0|\phi_j\rangle = E_j|\phi_j\rangle \qquad \langle \phi_j|\phi_k\rangle = \delta_{jk} \qquad |\psi(x,t)\rangle = \sum_k c_k(t)e^{-iE_kt}|\phi_k\rangle$$

Employing Schrödinger's equation:

$$H|\psi\rangle = i\frac{d}{dt}|\psi\rangle$$

$$\sum_{j} [E_{j} + V] e^{-iE_{j}t} c_{j}|\phi_{j}\rangle \qquad i\sum_{k} [\dot{c}_{k} - iE_{k}c_{k}] e^{-iE_{k}t}|\phi_{k}\rangle$$

$$\sum_{j} V e^{-iE_{j}t} c_{k} |\phi_{j}\rangle = i \sum_{k} \dot{c}_{k} e^{-iE_{k}t} |\phi_{k}\rangle$$

FIRST ORDER:

- Now assume that we start in a specific state
 - $c_i(0) = 1, c_{j\neq i}(0) = 0$
 - $V \ll H_0$ so that $c_i(t) \sim 1 \gg c_{i\neq i}(t)$ for all t

$$\sum_{j} V e^{-iE_{j}t} c_{k} |\phi_{j}\rangle = i \sum_{k} \dot{c}_{k} e^{-iE_{k}t} |\phi_{k}\rangle$$

$$\langle \phi_{f}| \to V e^{-iE_{i}t} |\phi_{i}\rangle \qquad \sim \quad \langle \phi_{f}| \to i \sum_{k} \dot{c}_{k} e^{-iE_{k}t} |\phi_{k}\rangle$$

$$\dot{c}_{f} = -i \langle \phi_{f}|V|\phi_{i}\rangle e^{i(E_{f} - E_{i})t}$$

integrate in time to get the transition amplitude from i→f

$$c_f(T) = -i \int_0^T dt \ \langle \phi_f | V | \phi_i \rangle e^{i(E_f - E_i)t}$$

$$\Gamma_{fi} = \frac{P_{fi}}{T} = \frac{1}{T} c_f^*(T) c_f(T) = |\langle \phi_f | V | \phi_i \rangle|^2 \frac{1}{T} \int_0^T dt \int_0^T dt' \ e^{i(E_f - E_i)t} e^{-i(E_f - E_i)t'}$$

FERMI'S GOLDEN RULE

We employ the "delta function":

$$\int dx \ e^{i(k-k')x} = 2\pi \times \delta(k-k')$$

$$\downarrow$$

$$\Gamma_{fi} = |\langle \phi_f | V | \phi_i \rangle|^2 \frac{1}{T} \int dt \int dt' \ e^{i(E_f - E_i)t} e^{-i(E_f - E_i)t'}$$

$$= 2\pi |\langle \phi_f | V | \phi_i \rangle|^2 \frac{1}{T} \int dt \ e^{i(E_f - E_i)t} \delta(E_f - E_i)$$

- ullet δ function enforces energy conservation
 - integrate over energy, with $\rho(E_f)$ = number of states at E_f

$$= 2\pi \int dE_f \; \rho(E_f) |\langle \phi_f | V | \phi_i \rangle|^2 \frac{1}{T} \int dt \; e^{i(E_f - E_i)t} \delta(E_f - E_i)$$
$$\equiv 2\pi |\langle \phi_f | V | \phi_i \rangle|^2 \rho(E_i)$$

DO IT AGAIN . . .

• We can use our new approximation to improve the original result $_{cT}$

$$c_f(T) = -i \int_0^T dt \ \langle \phi_f | V | \phi_i \rangle e^{i(E_f - E_i)t}$$

$$\sum_{j} V e^{-iE_j t} c_k |\phi_j\rangle = i \sum_{k} \dot{c}_k e^{-iE_k t} |\phi_k\rangle$$

$$T_{fi} = \langle \phi_f | V | \phi_i \rangle + \sum_{j \neq i} \frac{\langle \phi_f | V | \phi_j \rangle \langle \phi_j | V | \phi_i \rangle}{E_i - E_k}$$

PARTICLE DECAYS

- A particle of a given type is identical to all others of its type
 - some probability to decay within an infinitesimal time period dt
 - Γ is independent of how "old" the particle is.
- For an ensemble of particles, the total rate of change is:

$$dN = -\Gamma N dt \quad \Rightarrow \quad N(t) = N_0 e^{-\Gamma t}$$

- The number of surviving particles follows:
 - wait for half of the particles to disappear: "half life"

$$\frac{N(t)}{N_0} = \frac{1}{2} = e^{-\Gamma t} \quad \Rightarrow \quad t_{1/2} = \frac{\log 2}{\Gamma} \qquad N_0 \equiv N(0)$$

wait for the number to decrease by a factor of e: "lifetime"

$$\frac{N(t)}{N_0} = \frac{1}{e} = e^{-\Gamma t} \quad \Rightarrow \quad \tau = \frac{1}{\Gamma}$$

COMBINING DECAY RATES:

• If there are several decay "modes" each with a given rate Γ_i , the total decay rate is given by the sum of all the rates:

$$\Gamma_{tot} = \sum_{i} \Gamma_{i} \quad \Rightarrow \quad \tau = \frac{1}{\Gamma_{tot}}$$

If you are observing only one of these decay modes as a function of time, you
will still see the number of particles diminish as the total decay rate

$$e^{-\Gamma_{tot}t} = e^{-t/\tau}$$

even though the rate of decay per unit time is a fraction of the total decay rate

 You are observing a fraction of the total decays which means that the distribution will diminish as that fraction times the overall exponential.

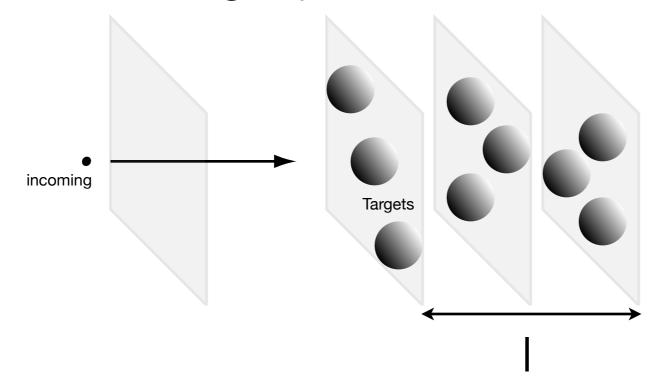
SCATTERING RATES

- Send in particles on a "target" and study what comes out
 - assume particles are "hard spheres" and projectile is infinitesimal

- Probability of interaction: area of target/unit area:
 - area of target particle = "cross section" σ
- - Luminosity $\mathcal{L} = \text{particles/unit area/time}$

MORE THAN ONE TARGET

- More than one "layer" of target particles
- More than one target per unit area.



- - Rate = N_T/U_n it Area $x \sigma x \mathcal{L} = n | \sigma \mathcal{L}$
 - n = number density of target particles, l = length of target

DIFFERENTIAL CROSS SECTION

- In hard sphere scattering, something "happening" is binary:
 - If the balls hit each other, then something happened
 - otherwise, nothing happened
- We generalize the idea of "something happening" by considering "differential cross section."
 - Probability that particle ends up in a particular part of phase space
 - e.g.. a particular momentum/angle range.

$$\sigma\Rightarrow\frac{d^3\sigma}{d\Omega\;dp}\qquad \begin{array}{c} &\text{polar angle}\\ d\Omega=\sin\theta d\theta\;d\phi=d\cos\theta\;d\phi\\ \text{"solid angle"} &\text{azimuthal angle} \end{array}$$

 Notation lends itself to "integrating" over a phase space variable: say we don't care about the momentum but only the angle:

$$\frac{d\sigma}{d\Omega} = \int p^2 dp \frac{d^3\sigma}{d\Omega \, dp}$$

TOTAL CROSS SECTION

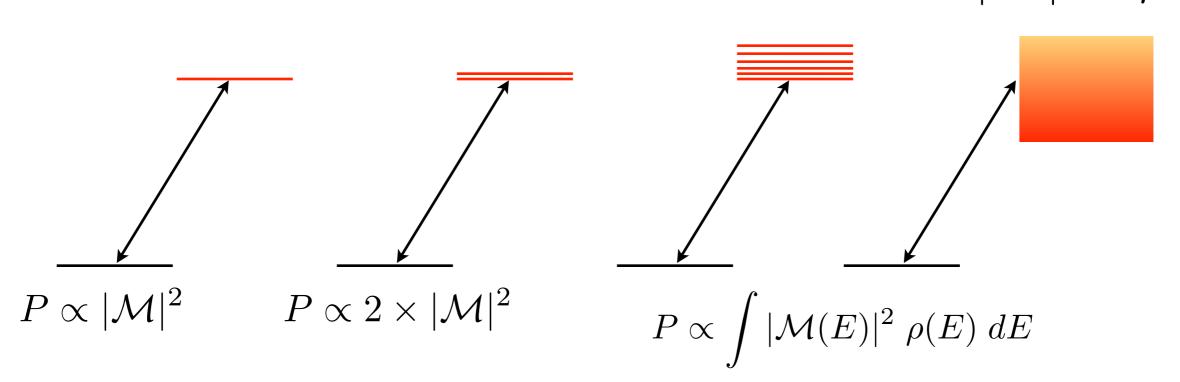
- "total cross section"
 - integrate over all phase space

$$\sigma_{TOT} = \int p^2 dp \ d\phi \ d\cos\theta \frac{d^3\sigma}{d\Omega \ dp}$$

- cross section for a particle to end up anywhere
- Note for "infinite range" interactions like the Coulomb interaction, the total cross section can be infinite; i.e. "something" always happens
 - This just reflects the fact that no matter how far you are away, there is still some electric field that will deflect your particle.

GOLDEN RULE:

- Fermi's golden rule states that the probability of a transition in quantum mechanics is given by the product of:
 - The absolute value of the matrix element (a k a amplitude) squared
 - The available density of states. $P \propto |\mathcal{M}|^2 \times \rho$



• Typically a decay of a particle into states with lighter product masses has more "phase space" and more likely to occur.

SUMMARY:

- We reviewed basics of Quantum Mechanics
 - Schrödinger's Equation
 - Commutation relations
 - Angular Momentum
 - Fermi's Golden Rule rate of a process breaks down into
 - an amplitude
 - phase space/density of states factor
- Introduced basic concepts of rate in:
 - particle decays: decay rate and lifetimes
 - scattering: (differential cross sections)
- A few new mathematical objects:
 - Kronecker and Dirac δ
 - **E**_{ijk}
 - Pauli matrices

NEXT TIME

• Please read Chapter 3

THE PAULI MATRICES

Define the matrices corresponding to our S_i operators

$$S_x = \frac{\hbar}{2}\sigma_x = \frac{\hbar}{2}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, S_y = \frac{\hbar}{2}\sigma_y = \frac{\hbar}{2}\begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}, S_z = \frac{\hbar}{2}\sigma_z = \frac{\hbar}{2}\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$

• eigenvectors corresponding to eigenstates of S_z .

$$|\frac{1}{2},\frac{1}{2}\rangle \rightarrow \begin{pmatrix} 1\\0 \end{pmatrix} \qquad |\frac{1}{2},-\frac{1}{2}\rangle \rightarrow \begin{pmatrix} 0\\1 \end{pmatrix}$$

Dirac notation

$$S_z|\frac{1}{2},\frac{1}{2}\rangle = \frac{\hbar}{2}|\frac{1}{2},\frac{1}{2}\rangle$$

$$S_z |\frac{1}{2}, -\frac{1}{2}\rangle = -\frac{\hbar}{2} |\frac{1}{2}, -\frac{1}{2}\rangle$$

Pauli matrix notation

$$\frac{\hbar}{2} \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) = \frac{\hbar}{2} \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$$

$$S_z|\frac{1}{2}, -\frac{1}{2}\rangle = -\frac{\hbar}{2}|\frac{1}{2}, -\frac{1}{2}\rangle$$

$$\frac{\hbar}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\begin{pmatrix} 0 \\ 1 \end{pmatrix} = -\frac{\hbar}{2}\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

MORE ON PAULI MATRICES:

Symbolic vs. Matrix form

$$S_{+}|\frac{1}{2},\frac{1}{2}\rangle = 0$$

$$S_{+}|\frac{1}{2}, -\frac{1}{2}\rangle = \hbar\sqrt{\frac{1}{2}\frac{3}{2} - \frac{1}{2}\frac{-1}{2}}|\frac{1}{2}, \frac{1}{2}\rangle = \hbar|\frac{1}{2}, \frac{1}{2}\rangle \qquad \frac{\hbar}{2}\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \hbar\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$S_{-}|\frac{1}{2},\frac{1}{2}\rangle = \hbar\sqrt{\frac{1}{2}\frac{3}{2} - \frac{-1}{2}\frac{1}{2}}|\frac{1}{2}, -\frac{1}{2}\rangle = \hbar|\frac{1}{2}, -\frac{1}{2}\rangle \qquad \frac{\hbar}{2}\begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \hbar\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$S_-|\frac{1}{2}, -\frac{1}{2}\rangle = 0$$

$$S_{+} = S_{x} + iS_{y} = \frac{\hbar}{2} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$
$$\frac{\hbar}{2} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0$$

$$\frac{\hbar}{2} \left(\begin{array}{cc} 0 & 2 \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) = 0$$

$$\frac{\hbar}{2} \left(\begin{array}{cc} 0 & 2 \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 1 \end{array} \right) = \hbar \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$$

$$S_{-} = S_{x} - iS_{y} = \frac{\hbar}{2} \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$$

$$\frac{\hbar}{2} \left(\begin{array}{cc} 0 & 0 \\ 2 & 0 \end{array} \right) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) = \hbar \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$$

$$\frac{\hbar}{2} \left(\begin{array}{cc} 0 & 0 \\ 2 & 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 1 \end{array} \right) = 0$$

TOTAL ANGULAR MOMENTUM

$$S^{2}|\frac{1}{2}, \frac{1}{2}\rangle = l(l+1)\hbar^{2}|\frac{1}{2}, \frac{1}{2}\rangle = \frac{3}{4}\hbar^{2}|\frac{1}{2}, \frac{1}{2}\rangle$$

$$S^{2}|\frac{1}{2}, -\frac{1}{2}\rangle = l(l+1)\hbar^{2}|\frac{1}{2}, -\frac{1}{2}\rangle = \frac{3}{4}\hbar^{2}|\frac{1}{2}, -\frac{1}{2}\rangle$$

$$\begin{split} S^2 &= S_x^2 + S_y^2 + S_z^2 = \frac{\hbar^2}{4} \times \left[\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)^2 + \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right)^2 + \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right)^2 \right] \\ & \frac{3\hbar^2}{4} \times \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \\ & \frac{3\hbar^2}{4} \times \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{cc} 1 \\ 0 \end{array} \right) = \frac{3\hbar^2}{4} \times \left(\begin{array}{cc} 1 \\ 0 \end{array} \right) \\ & \frac{3\hbar^2}{4} \times \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{cc} 0 \\ 1 \end{array} \right) = \frac{3\hbar^2}{4} \times \left(\begin{array}{cc} 0 \\ 1 \end{array} \right) \end{split}$$