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O F F I C E  H O U R S :

• According to the doodle poll: 

• Everyone can make it to either: 

• Monday at 4 pm 

• Tuesday at 4 pm 

• Office hours will (usually) be held at this time



L A S T  T I M E :
• We reviewed special relativity 

• we will mainly be interested in particle kinematics  

• energy, momentum, mass 

• importance of invariant quantities  

• pay attention to 3- vs. 4-vectors! 

• Today, we move to quantum mechanics 

• review basic concepts in quantum dynamics 

• currents 

• spin and angular momentum 

• time dependent perturbation theory  and scattering



B A S I C  Q U A N T U M  M E C H A N I C S
• The Schrödinger Equation: 

• for non-relativistic quantum mechanics 

• Consider 
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C O N S E R V E D  C U R R E N T
• conserved current: 

• Consider the previous equations: 

• we can consider this a conserved current with  

• corresponding to the conserved flow of particle (density)
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C O M M U TAT O R S :

• [A, B] = AB-BA 

• Convince yourself: 

• [AB,C] = A[B,C] + [A,C]B 

• [A,BC] = [A,B]C + B[A,C] 

• Consequences for operators that commute? 

• Canonical commutation relation 

• [x,p] = i 

• If we label (x, y, z) → (r1, r2,r3), (px, py, pz) → (p1, p2, p3) 

• [ra, pb] = i δab



A N G U L A R  M O M E N T U M
• From classical mechanics: 

• L = r x p 
• Lx = y pz -z py  . . . . . .  

• Li = εijk rj pk  

• εijk =  0 if any of ijk are equal 

• εijk = +1 if ijk is even permutation of 123 

• εijk = -1 if ijk is even permutation of 123 

• From the canonical commutation relations: 

• [Li, Lj] = i εijk Lk 

• [Lx,Ly] = iLz . . . . .  

• what consequences does this have for simultaneous eigenstates? 

• Usually, we choose to diagonalize in Lz



T O TA L  A N G U L A R  M O M E N T U M
• We can consider the magnitude of the angular momentum 
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• Consider an eigenstates
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• Representations of angular momentum 

• we can have states of total orbital angular momentum in integers 

• also half-integer states corresponding to spin (more on this later) 

• 2l+1 states corresponding for angular momentum l states.



T H E  PA U L I  M AT R I C E S

• Define the matrices: 

• Convince yourself that: 

• they satisfy the commutation relations [Si, Sj] = i εijk Sk 

• the vectors              are the eigenvectors of Sz with the 
appropriate eigenvalues 

• operators S+  and S- have the desired properties. 

• all states of this system have the appropriate eigenvalue 
for a spin 1/2 system for the operator S2.
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T I M E - D E P E N D E N T  P E R T U R B AT I O N

• “weakly” interacting system 

• most energy in free motion with small potential energy/interaction 

• H = H0 + V 

• Assume we know eigenstates of H0 

• Employing Schrödinger’s equation: 

H0|�ji = Ej |�ji h�j |�ki = �jk | (x, t)i =
X

k

ck(t)e
�iEkt|�ki

H| i = i
d

dt
| i

X

j

[Ej + V ] e�iEjtcj |�ji i
X

k
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F I R S T  O R D E R :
• Now assume that we start in a specific state 

• ci(0) = 1, cj≠i(0) = 0 

• V ≪ H0 so that ci(t) ~1≫  cj≠i(t) for all t 

• integrate in time to get the transition amplitude from i→f 
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F E R M I ’ S  G O L D E N  R U L E
• We employ the “delta function”: 

• δ function enforces energy conservation 

• integrate over energy, with ρ(Ef) = number of states at Ef
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D O  I T  A G A I N  .  .  . .  
• We can use our new approximation to improve the 

original result
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PA R T I C L E  D E C AY S
• A particle of a given type is identical to all others of its type 

• some probability to decay within an infinitesimal time period dt 

• Γ is independent of how “old” the particle is. 

• For an ensemble of particles, the total rate of change is: 

• The number of surviving particles follows: 

• wait for half of the particles to disappear: “half life” 

• wait for the number to decrease by a factor of e: “lifetime”
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C O M B I N I N G  D E C AY  R AT E S :
• If there are several decay “modes” each with a given rate Γi, the total decay 

rate is given by the sum of all the rates: 

• If you are observing only one of these decay modes as a function of time, you 
will still see the number of particles diminish as the total decay rate 

even though the rate of decay per unit time is a fraction of the total decay rate 

• You are observing a fraction of the total decays which means that the 
distribution will diminish as that fraction times the overall exponential.
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S C AT T E R I N G  R AT E S
• Send in particles on a “target” and study what comes out 

• assume particles are “hard spheres” and projectile is 
infinitesimal 

• Probability of interaction: area of target/unit area:  

• area of target particle = “cross section” σ 

• Rate ∝ rate of incoming particles:  

• Luminosity L = particles/unit area/time

incoming

Target



M O R E  T H A N  O N E  TA R G E T

• More than one “layer” of target particles 

• More than one target per unit area. 

• Rate ∝ targets in the column swept by the incoming beam 

• Rate = NT/Unit Area  x σ x L =  n l σ L 

• n = number density of target particles, l = length of target

incoming

Targets

l



D I F F E R E N T I A L  C R O S S  S E C T I O N
• In hard sphere scattering, something “happening” is binary: 

• If the balls hit each other, then something happened 

• otherwise, nothing happened 

• We generalize the idea of “something happening” by 
considering “differential cross section.” 

• Probability that particle ends up in a particular part of phase space 

• e.g.. a particular momentum/angle range. 

• Notation lends itself to “integrating” over a phase space variable: 
say we don’t care about the momentum but only the angle:
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T O TA L  C R O S S  S E C T I O N
• “total cross section” 

• integrate over all phase space 

• cross section for a particle to end up anywhere 

• Note for “infinite range” interactions like the Coulomb 
interaction, the total cross section can be infinite; i.e. 
“something” always happens 

• This just reflects the fact that no matter how far you are 
away, there is still some electric field that will deflect your 
particle.

⇥TOT =
�

p2dp d⇤ d cos �
d3⇥

d� dp



G O L D E N  R U L E :
• Fermi’s golden rule states that the probability of a transition in 

quantum mechanics is given by the product of: 

• The absolute value of the matrix element (a k a amplitude) squared  

• The available density of states. 

• Typically a decay of a particle into states with lighter product 
masses has more “phase space” and more likely to occur.
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S U M M A R Y:
• We reviewed basics of Quantum Mechanics 

• Schrödinger’s Equation 

• Commutation relations 

• Angular Momentum 

• Fermi’s Golden Rule rate of a process breaks down into  

• an amplitude  

• phase space/density of states factor 

• Introduced basic concepts of rate in: 

• particle decays: decay rate and lifetimes 

• scattering: (differential cross sections) 

• A few new mathematical objects: 

• Kronecker and Dirac δ 

• εijk  

• Pauli matrices



N E X T  T I M E

• Please read Chapter 3



T H E  PA U L I  M AT R I C E S

• Define the matrices corresponding to our Si operators 

• eigenvectors corresponding to eigenstates of S, Sz.
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M O R E  O N  PA U L I  M AT R I C E S :

• Symbolic vs. Matrix form
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T O TA L  A N G U L A R  M O M E N T U M
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