PHY489/1489: LECTURE 20

SPONTANEOUS
SYMMETRY BREAKING



LAST TIME:

* Last time, we introduced the Lagrangian formalism as an

alternative to the equations of motion

* Local gauge symmetry works basically the same as before

* e.g.fora U(1) gauge symmetry:
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* We found that local gauge symmetry forbids the gauge

bosons from having mass

e \We also found t
introduced for t
masses!

nat the SU(2). x U(T)y symmetry we

ne weak interaction also forbids fermion



MORE ON THE MASS TERM
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Lp = ipy*d,1) — mipp = 0
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° mass terms are quadratic in the field

* j.e.ifthereis a quadratic term in the lagrangian, it behaves as a mass.



“"VACUUM EXPECTATION VALUE"

e Consider the Lagrangian g prTTTTTTT
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* Note that ¢=0 is not a stable configuration
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e the vacuum (e.g. lowest energy state) actually happens when ¢ has some
non-zero value

e “vacuum expectation value” (VEV)
e Perturbation theory must start from a stable vacuum in order to work

e choose a vacuum state

e “spontaneous symmetry” breaking



e Consider a complex scalar Lagrangian:
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* Instead of two potential vacuum contigurations, we now have
an infinite number of connected states 8| = Lt
e Expand about a vacuum point D)

e |et's also make it locally gauge invariant by introducing the
“covariant derivative”

* that means we get a gauge boson along for the ride
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BREAK THE SYMMETRY

A
L= 1(% —iqAu) T (0" +igAr)g + 2676 - 7(670)7 —m%FWFW
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* choose a vacuum point: ¢, = %

* and reparameterize the tields as:
n=¢1— % X = ¢2
e and rewrite the Lagrangian focussing on the kinetic part
(Op — iqAL)¢" (9" +1iqA")¢
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this is a mass term for the vector particle ma = 2 /e
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HOW DID THIS HAPPEN:

e Recall that our gauge invariant Lagrangian

(O — 1qAL) 9™ (0% +iqAY) ¢

* has aterm quuA“¢*¢

* Normally, ¢ is just a normal field

* but the potential gives it a vacuum expectation (e.g. non-zero)
base value that turns this into a mass term for A

* we chose a particular vacuum configuration but the result is
independent of our choice

* the symmetry isn't “really” broken, just hidden by our choice



OTHER TERMS

= [(au —iqA.) (7 - .
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* Note that the Lagrangian also includes a kinetic term for a
massless field y

e thisis called a “Nambu-Goldstone boson”

* Another term:
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° is a bit problematic. . .
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* The A particle spontaneously turns into y
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ACCOUNTING ISSUE
(O — iqA,) o™ (0" +1iqA)¢

= |0, —igA)(n+ 5 = ix0)| (0" +igA")(n+ 5 +ix)

* We started with:
e two scalar fields (¢, ¢, or alternatively ¢, ¢)
* a massless gauge boson (two polarizations)
 We end up with:
e two scalar fields (n, x)
* a massive gauge boson (three polarizations)

* where did the extra degree of freedom come trom?



GAUGE TRANSFORMATION

= |0, —igA)(n+ 5 = ix0)| (0" +igA")(n+ 5 +ix)

e it we isolate the the terms related to y and A
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* this last transformation effectively represents a gauge transformation

A
A,u — A,u + @(%X)
* We can "gauge transform” the y field to disappear explicitly from the

Lagrangian
* the yfield corresponds to the “new” longitudinal polarization of the A

* "The gauge boson ate the goldstone boson”



GAUGE COUPLINGS
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ELECTROWEAK MODEL

e The features for the SU(2), xU(1)y spontaneous symmetry breaking have
the same basic concepts:

* We introduce a SU(2)xU(1)y doublet of scalar fields a quartic potential
L= (0.0)"(0"¢) — p*¢'d — Mo'9)

e make it gauge invariant by introducing a covariant SU(2),xU(1)y derivative

* we spontaneously break the symmetry

* ¢ acquires a vacuum expectation value that gives W and Z mass

* W mass governed completely by the SU(2), gauge coupling constant and the
vacuum expectation value

* the A, Z mass, however, will involve both the SU(2), and U(1)y gauge couplings

e diagonalization of the mass matrix will result in a massless A boson and
modified mass for the Z boson.
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ONE REMAINING ISSUE

e The fermion masses!

VLR + YRYL

e we found this breaks gauge symmetry because it couples an
SU(2), doublet to a SU(2), singlet

Ly = —ge {(VLH?L) ( q;g ) €R h-C}

* by coupling the left chiral fields to the Higgs field, we can
generate an overall singlet.

* by acquiring a vacuum expectation value, this becomes the
mass of the electron.

® QeV ™~ Mg Me/V e
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CONCLUSIONS:

* Gauge invariance forces us to make back doors for introducing mass
into our theory

e Spontaneous symmetry breaking gives us a way of introducing a
“constant” background with gauge quantum numbers to produce mass
terms that preserve gauge symmetry

* As a consequence there is a tight interconnection between
* the vacuum expectation value
* gauge couplings
* gauge boson masses

* effectively fixed by the model and tested and can be tested.

* In the electroweak model, the termion masses can be generated in the
same way.

* Fixes relation between vey, fermion mass, and Higgs coupling to the fermion



NEXT TUESDAY

Pierre Savard: discussion on Higgs physics

* how did we discover the Higgs boson?

e what do we know about it now?

* how do we know that it is "the” Higgs boson?

Thank you for all your hard work in the class

| hope you have learned something and
obtained an appreciation for how spectacular

and mysterious particle physics is.
Reminder:

e Midterm grading

e Additional office hours

* please let me know if there is anything that was
particular unclear, etc.
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