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M I D T E R M :
• The last problem in the midterm asked you to consider: 

• As it turns out, this problem is not posed correctly and I 
also solved it incorrectly (SAD!). 

• Please bring your exam to Randy for reevaluation on 
this problem 

• outcome can only be positive 

• we cannot adjust your grade unless you bring your midterm

PLPL = PL, PRPR = PR (6)

2.3 Helicity vs. Chiral states: (20 pts)

Using the explicit 4⇥4 form of PR/L, evaluate their action on the helicity states of massless

Dirac particles:
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). Namely, evaluate:
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(8)

This shows that from a general spinor u or v, PR/L will project out orthogonal “chiral”

states that correspond to " / # helicity (for particles) or # / " helicity (for antiparticles) if

the particle is massless.

2.4 Chirality in the electromagnetic interaction: (20 pts)

Using the general properties of the �5, show that in the massless limit, an electron and

positron cannot annihilate if their helicities are opposite:
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µ
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µ
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F I N A L  E X A M I N AT I O N
• Will consist of: 

• ~4 short answer questions 

• 2 detailed calculations with Feynman rules, amplitudes, decay rates/
cross sections 

• Formula sheet will be provided  

• relevant Feynman rules, helicity spinors, phase space expressions 

• I’ll try to circulate before hand. . . . 

• you can additionally bring one page of equations and notes (feel free to 
use both sides) and a basic calculator 

• will cover material up to/including today’s lecture 

• emphasis on material since midterm 

• 7-10PM on Friday, 16 December 

• TC 239 (Seeley Hall, Trinity College) , 6 Hoskin Avenue 



E L E C T R O W E A K  M I X I N G
• Two lectures ago, we saw how: 

• a SU(2)L gauge group coupling only to left chiral fermions (W) 

• a U(1)Y gauge group with both (but different) couplings to left 
and right chiral fields (B) 

• came together to form: 

• weak charged currents with only left chiral couplings 

• a neutral current with equal left/right coupling 

• a neutral current with imbalanced left/right coupling 

• We already studied the first two 

• Let’s explore the third a bit more



Z  C O U P L I N G S
• the Z couplings resulted from a mixing of W3 and B 

• Recovering the EM interaction as we know it introduced 
relations between the coupling constants and Y 

• For the neutrino: 

• which we can translate into a vertex factor 

• in this case the coupling is pure left chiral
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G E N E R A L LY:
• We got the following: 

• for the left coupling we have: 

• In general we can write the Z vertex in terms of: 

• left/right chiral couplings 

• vector/axial vector couplings:
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• for the right coupling we have:

cR = �Q sin2 ✓W



Z  D E C AY S :

• As usual, we will consider helicity/chiral states in the massless limit. 

• Using the relation 

• we can show: 

• so that we need only consider 

• to consider this in terms of cL and cR 

• so that
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Z  D E C AY S  C O N T I N U E D
• Use the previously calculated helicity combinations: 

• where E = mZ/2  

• contract this with our Z polarization vectors 

• to get six  Z polarization/outgoing helicity combinations 

• stick this with the other factors
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F I N A L  S T E P S :
• We can square all the matrix elements and add them 

together to get the spin-summed amplitude 

• Divide by the initial polarization states to average 

• Putting it into our decay phase space formula 
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M E A U R E M E N T S  AT  L E P
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50. Plots of cross sections and related quantities 5

σ and R in e+e− Collisions
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Figure 50.5: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)



L A G R A N G I A N  M E C H A N I C S
• Describe a system with coordinates and its time derivatives: 

• Equations of motion are obtained by minimizing the action 

• resulting in Euler-Largange equations 

• For a point particle in a potential with Cartesian coordinates:
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F O R  “ F I E L D S : ”
• Fields become the “coordinate” with space time as the “dynamical variable” 

• q(t) → f(x) 

•   

• The action is now defined as: 

• Euler-Lagrange Equatoins:
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• Examples of Lagrangians and their equations of motion 



L O C A L  G A U G E  I N VA R I A N C E
• We can recast our previous discussion about local gauge invariance in 

the Lagrangian framework 

• Example: consider the Dirac Lagrangian with local gauge 
transformation 

• As before,  need to add a new field and interaction 

• Another way to summarize this is to convert the derivative to a 
“covarinan derivative”
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• We can also extend to a “non-abelian” gauge symmetry: 

• where as before we need to add another term and fields:  

• and the mass term is once again forbidden 

• the gauge invariance can be restored by:

A  F E W  E N H A N C E M E N T S
• As it stands, the A field is static 

• We can give it “life” by adding a kinematic term 

• but recalling the transformation: 

• we find that the last term (the mass) is not gauge-invariant
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O N E  M O R E  D I L E M M A
• Consider the Dirac mass term: 

• mass terms result form the coupling of left and right chiral states of a particle 

• this violates gauge symmetry in the SU(2)LxU(1)Y model of weak interactions 

• thus direct fermion mass terms (quarks, leptons) are also forbidden.

m ̄ 

=  ̄L L +  ̄L R +  ̄R L +  ̄R R

=  ̄L R +  ̄R L



S U M M A RY:
• Electroweak mixing makes predictions about cV, cA 

(alternatively cL, cR) couplings of the Z boson that can 
be tested 

• different particle species have different couplings 

• We can recast the equations of motion in terms of 
Lagrangians and reintroduce gauge symmetry 

• We find that gauge symmetry really doesn’t like 
masses 

• Please read chapters 17.4-17.5


