PHYSICS 489/1489: LECTURE 19

TESTS OF EW MIXING AND LAGRANGIANS

MIDTERM:

- The last problem in the midterm asked you to consider:

$$
\overline{\left(P_{L} v\right)} \gamma^{\mu}\left(P_{L} u\right)=\overline{\left(P_{R} v\right)} \gamma^{\mu}\left(P_{R} u\right)=0
$$

- As it turns out, this problem is not posed correctly and I also solved it incorrectly (SAD!).
- Please bring your exam to Randy for reevaluation on this problem
- outcome can only be positive
- we cannot adjust your grade unless you bring your midterm

FINAL EXAMINATION

- Will consist of:
- ~4 short answer questions
- 2 detailed calculations with Feynman rules, amplitudes, decay rates/ cross sections
- Formula sheet will be provided
- relevant Feynman rules, helicity spinors, phase space expressions
- I'll try to circulate before hand. ...
- you can additionally bring one page of equations and notes (feel free to use both sides) and a basic calculator
- will cover material up to/including today's lecture
- emphasis on material since midterm
- 7-10PM on Friday, 16 December
- TC 239 (Seeley Hall, Trinity College) , 6 Hoskin Avenue

ELECTROWEAK MIXING

- Two lectures ago, we saw how:
- a SU(2) , gauge group coupling only to left chiral fermions (W)
- a $U(1)_{\text {y }}$ gauge group with both (but different) couplings to left and right chiral fields (B)
- came together to form:
- weak charged currents with only left chiral couplings
- a neutral current with equal left/right coupling
- a neutral current with imbalanced left/right coupling
- We already studied the first two
- Let's explore the third a bit more

Z COUPLINGS

- the Z couplings resulted from a mixing of W_{3} and B

$$
Z_{\mu}=-B_{\mu} \sin \theta_{W}+W_{\mu}^{3} \cos \theta_{W}
$$

- Recovering the EM interaction as we know it introduced relations between the coupling constants and Y

$$
g_{Z} \equiv \frac{g}{\cos \theta_{W}}=\frac{e}{\sin \theta_{W} \cos \theta_{W}} \quad g^{\prime}=g_{Z} \sin \theta_{W} \quad Y=2\left(Q-I_{W}^{3}\right)
$$

- For the neutrino:

$$
\begin{aligned}
\bar{\nu}_{L} \gamma^{\mu} \nu_{L} \rightarrow-\frac{g^{\prime}}{2} Y_{\nu_{L}} \sin \theta_{W}+\frac{1}{2} g \cos \theta_{W} & \rightarrow \frac{g_{Z}}{2} \\
\bar{\nu}_{R} \gamma^{\mu} \nu_{R} \rightarrow-\frac{g^{\prime}}{2} Y_{\nu_{R}} \sin \theta_{W} & \rightarrow 0
\end{aligned}
$$

- which we can translate into a vertex factor
- in this case the coupling is pure left chiral

$\frac{-i g_{Z}}{2} \gamma^{\mu}\left(1-\gamma^{5}\right)$

GENERALLY:

$$
\begin{aligned}
& g_{Z} \equiv \frac{g}{\cos \theta_{W}}=\frac{e}{\sin \theta_{W} \cos \theta_{W}} \\
& g^{\prime}=g_{Z} \sin \theta_{W}
\end{aligned}
$$

- We got the following: $Z_{\mu}=-B_{\mu} \sin \theta_{W}+W_{\mu}^{3} \cos \theta_{W}$
- for the left coupling we have:

$$
\begin{aligned}
& -\frac{g^{\prime}}{2} \sin \theta_{W} Y+g \cos \theta_{W} I_{3} \\
& -\frac{g_{Z}}{2} \sin ^{2} \theta_{W} Y+g \cos ^{2} \theta_{W} I_{3} \\
& -\frac{g_{Z}}{2} \sin ^{2} \theta_{W}\left(2 Q-I_{3}\right)+g \cos ^{2} \theta_{W} I_{3} \\
& \quad c_{L}=g_{Z}\left(I_{3}-Q \sin ^{2} \theta_{W}\right)
\end{aligned}
$$

- for the right coupling we have:

$$
\begin{aligned}
& \frac{-g^{\prime}}{2} \sin \theta_{W} Y \\
& \frac{-g_{Z}}{2} \sin ^{2} \theta_{W} Y
\end{aligned}
$$

$$
c_{R}=-Q \sin ^{2} \theta_{W}
$$

- In general we can write the Z vertex in terms of:
- left/right chiral couplings

$$
-i g_{Z}\left[c_{L} \gamma^{\mu}\left(1-\gamma^{5}\right)+c_{R} \gamma^{\mu}\left(1+\gamma^{5}\right)\right]
$$

$$
\begin{aligned}
c_{L} & =I_{3}-Q \sin ^{2} \theta_{W} \\
c_{R} & =-Q \sin ^{2} \theta_{W}
\end{aligned}
$$

- vector/axial vector couplings:

$$
\begin{array}{ll}
\frac{-i g_{Z}}{2} \gamma^{\mu}\left[c_{V}-c_{A} \gamma^{5}\right] & c_{V}=c_{L}+c_{R} \\
c_{A}=I_{3}-2 Q \sin ^{2} \theta_{W} \\
c_{L}-c_{R} & =I_{3}
\end{array}
$$

Z DECAYS:

$$
\mathcal{M}=\frac{g_{Z}}{2} \bar{u}_{2} \gamma^{\mu}\left[c_{V}-c_{A} \gamma^{5}\right] v_{3} \epsilon_{1 \mu}
$$

- As usual, we will consider helicity/chiral states in the massless limit.
- Using the relation $\gamma^{\mu}\left(c_{V}-c_{A} \gamma^{5}\right) \frac{1 \pm \gamma_{5}}{2} \rightarrow \frac{1 \mp \gamma^{5}}{2} \gamma^{\mu}\left(c_{V}-c_{A} \gamma^{5}\right)$
- we can show:

$$
\bar{u}_{2 L} \gamma^{\mu}\left[c_{V}-c_{A} \gamma^{5}\right] v_{3 L}=\bar{u}_{2 R} \gamma^{\mu}\left[c_{V}-c_{A} \gamma^{5}\right] v_{3 R}=0
$$

- so that we need only consider

$$
\bar{u}_{2 L} \gamma^{\mu}\left[c_{V}-c_{A} \gamma^{5}\right] v_{3 R} \quad \bar{u}_{2 R} \gamma^{\mu}\left[c_{V}-c_{A} \gamma^{5}\right] v_{3 L}
$$

- to consider this in terms of c_{L} and c_{R}

$$
c_{V}-c_{A} \gamma^{5} \rightarrow\left(c_{L}+c_{R}\right)-\left(c_{L}-c_{R}\right) \gamma^{5}
$$

- so that $c_{L} \bar{u}_{2 L} \gamma^{\mu}\left[1-\gamma^{5}\right] v_{3 R} \quad c_{R} \bar{u}_{2 R} \gamma^{\mu}\left[1+\gamma^{5}\right] v_{3 L}$

Z DECAYS CONTINUED $\mathcal{M}=\frac{g_{Z}}{2} \bar{u}_{2} \gamma^{\mu}\left[c_{V}-c_{A} \gamma^{5}\right] v_{3 \varepsilon_{1} \mu}$

- Use the previously calculated helicity combinations:

$$
\begin{aligned}
& \frac{1}{2} \bar{u}_{2 L} \gamma^{\mu}\left[1-\gamma^{5}\right] v_{3 R} \rightarrow \bar{u}_{2 L} \gamma^{\mu} v_{3 R}=2 E(0,-\cos \theta,-i, \sin \theta) \\
& \frac{1}{2} \bar{u}_{2 R} \gamma^{\mu}\left[1+\gamma^{5}\right] v_{3 L} \rightarrow \bar{u}_{2 R} \gamma^{\mu} v_{3 L}=2 E(0,-\cos \theta, i, \sin \theta)
\end{aligned}
$$

- where $E=m_{z} / 2$
- contract this with our Z polarization vectors

$$
\epsilon_{+\mu}=\frac{1}{\sqrt{2}}(0,1, i, 0) \quad \epsilon_{-\mu}=\frac{1}{\sqrt{2}}(0,-1,+i, 0) \quad \epsilon_{L \mu}=(0,0,0,-1)
$$

- to get six Z polarization/outgoing helicity combinations
- stick this with the other factors

| | + | - | L |
| :---: | ---: | ---: | :---: | :---: |
| $L R$ | $1-\cos \theta$ | $1+\cos \theta$ | $-\sin \theta$ |
| $R L$ | $-1-\cos \theta$ | $-1+\cos \theta$ | $-\sin \theta$ |

FINAL STEPS:

- We can square all the matrix elements and add them together to get the spin-summed amplitude

$$
\sum|\mathcal{M}|^{2}=2 g_{Z}^{2} m_{Z}^{2}\left(c_{L}^{2}+c_{R}^{2}\right) \rightarrow g_{Z}^{2} m_{Z}^{2}\left(c_{V}^{2}+c_{A}^{2}\right)
$$

- Divide by the initial polarization states to average
- Putting it into our decay phase space formula

$$
\Gamma=\frac{|\mathbf{p}|}{32 \pi^{2} m_{Z}^{2}} \int d \Omega|\mathcal{M}|^{2}=\frac{g_{Z}^{2} m_{Z}^{2}}{48 \pi}\left(c_{V}^{2}+c_{A}^{2}\right)
$$

	C_{V}	C_{A}	$C_{v^{2}}+C_{A}{ }^{2}$	REL.	FRAC.
$\nu_{e}, \nu_{\mu}, \nu_{\tau}$	$1 / 2$	$1 / 2$	0.50	1.5	0.23
e, μ, t	$-1 / 2+2 \sin ^{2} \theta_{\mathrm{w}}$	$-1 / 2$	0.251	0.753	0.12
$\mathrm{u}, \mathrm{c}, \mathrm{t}$	$+1 / 2-4 / 3 \sin ^{2} \theta_{\mathrm{w}}$	$1 / 2$	0.286	1.72	0.26
$\mathrm{~d}, \mathrm{~s}, \mathrm{~b}$	$-1 / 2+2 / 3 \sin ^{2} \theta_{\mathrm{w}}$	$-1 / 2$	0.373	2.57	0.39

MEAUREMENTS AT LEP

	C_{V}	C_{A}	$C V^{2}+C_{\text {a }}{ }^{2}$	REL	FRAC	MEAS
$\nu_{e}, \nu_{\mu}, \nu_{\tau}$	1/2	1/2	0.50	1.50	0.20	0.20
e, μ, t	$-1 / 2+2 \sin ^{2} \theta_{w}$	-1/2	0.251	0.753	0.10	0.10
u, c, t	$+1 / 2-4 / 3 \sin ^{2} \theta_{\mathrm{w}}$	1/2	0.286	1.716	0.23	0.23
$\mathrm{d}, \mathrm{s}, \mathrm{b}$	$-1 / 2+2 / 3 \sin ^{2} \theta_{w}$	-1/2	0.373	3.357	0.46	0.47

LAGRANGIAN MECHANICS

- Describe a system with coordinates and its time derivatives:

$$
L=L(q, \dot{q})=T-U
$$

- Equations of motion are obtained by minimizing the action

$$
S=\int d t L\left(q_{i}, \dot{q}_{i}\right)
$$

- resulting in Euler-Largange equations $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\frac{\partial L}{\partial q_{i}}=0$
- For a point particle in a potential with Cartesian coordinates:

$$
\begin{aligned}
& L=\frac{1}{2} m \dot{q}_{i}^{2}-U\left(q_{i}\right) \quad \frac{d}{d t}\left(m \dot{q}_{i}\right)+\frac{\partial U}{\partial q_{i}}=0 \quad m \ddot{q}_{i}=-\frac{\partial U}{\partial q_{i}} \\
& m \ddot{x}=-\frac{\partial U}{\partial x} \quad m \ddot{y}=-\frac{\partial U}{\partial y} \quad m \ddot{z}=-\frac{\partial U}{\partial z}
\end{aligned}
$$

FOR "FIELDS:"

- Fields become the "coordinate" with space time as the "dynamical variable"
- $\mathrm{q}(\mathrm{t}) \rightarrow \mathrm{f}(\mathrm{x})$
- $L \Rightarrow \mathcal{L}\left(\phi(x), \partial_{\mu} \phi(x)\right) \quad L=\int d^{3} x \mathcal{L}\left(\phi, \partial_{\mu} \phi\right)$
- The action is now defined as: $\int d t L=\int d t \int d^{3} x \mathcal{L}\left(\phi, \partial_{\mu} \phi\right)=\int d^{4} x \mathcal{L}\left(\phi, \partial_{\mu} \phi\right)$
- Euler-Lagrange Equatoins:

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\frac{\partial L}{\partial q_{i}}=0 \quad \longrightarrow \quad \partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\right)=\frac{\partial \mathcal{L}}{\partial \phi}
$$

- Examples of Lagrangians and their equations of motion
$\mathcal{L}_{K G}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2}$

$$
\partial_{\mu} \partial^{\mu} \phi+m^{2} \phi^{2}=0
$$

$\mathcal{L}_{D}=i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi=0$

$$
i \gamma^{\mu} \partial_{\mu} \psi-m \psi=0
$$

$\mathcal{L}_{P}=\frac{-1}{16 \pi}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)+\frac{1}{8 \pi} m^{2} A^{\nu} A_{\nu} \quad \partial_{\mu}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)+m^{2} A^{\nu}=0$

LOCAL GAUGE INVARIANCE

- We can recast our previous discussion about local gauge invariance in the Lagrangian framework
- Example: consider the Dirac Lagrangian with local gauge transformation

$$
\begin{aligned}
\mathcal{L}_{D}=i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi=0 \quad \psi & \rightarrow e^{i q \theta(x)} \psi \\
\partial_{\mu} \psi & \rightarrow e^{i q \theta} \partial_{\mu} \psi+i q \partial_{\mu} \theta e^{i q \theta} \partial_{\mu} \psi \\
\mathcal{L} & \rightarrow \mathcal{L}-q \bar{\psi} \gamma^{\mu}\left(\partial_{\mu} \theta\right) \psi
\end{aligned}
$$

- As before, need to add a new field and interaction

$$
\mathcal{L} \rightarrow \mathcal{L}-q \bar{\psi} \gamma^{\mu} \psi A_{\mu} \quad A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \theta
$$

- Another way to summarize this is to convert the derivative to a "covarinan derivative"

$$
\partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu}+i q A_{\mu}
$$

A FEW ENHANCEMENTS

- As it stands, the A field is static
- We can give it "life" by adding a kinematic term

$$
\mathcal{L}=i \bar{\psi} \gamma^{\mu} D_{\mu} \psi-q \bar{\psi} \gamma^{\mu} \psi A_{\mu}-\frac{1}{16 \pi}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)+\frac{1}{8 \pi} m^{2} A^{\nu} A_{\nu}
$$

- but recalling the transformation: $A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \theta$
- we find that the last term (the mass) is not gauge-invariant
- We can also extend to a "non-abelian" gauge symmetry:
$\psi \rightarrow e^{i g \vec{\gamma} \cdot \mathbf{a}(x)} \psi \equiv S \psi \quad \partial_{\mu} \psi \rightarrow \partial_{\mu}(S \psi)=S\left(\partial_{\mu} \psi\right)+\left(\partial_{\mu} S\right) \psi$
- where as before we need to add another term and fields:
$\mathcal{L}=i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi-q\left(\bar{\psi} \gamma^{\mu} \vec{\tau} \psi\right) \cdot \mathbf{A}_{\mu} \quad \vec{\tau} \cdot \mathbf{A}_{\mu} \Rightarrow S\left(\vec{\tau} \cdot \mathbf{A}_{\mu}\right) S^{-1}+i\left(\frac{\hbar}{q}\right)\left(\partial_{\mu} S\right) S^{-1}$
- and the mass term is once again forbidden
- the gauge invariance can be restored by: $\partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu}+i g \vec{\tau} \cdot \mathbf{A}_{\mu}$

ONE MORE DILEMMA

- Consider the Dirac mass term:

$$
\begin{aligned}
& m \bar{\psi} \psi \\
= & \bar{\psi}_{L} \psi_{L}+\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}+\bar{\psi}_{R} \psi_{R} \\
= & \bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}
\end{aligned}
$$

- mass terms result form the coupling of left and right chiral states of a particle
- this violates gauge symmetry in the $\operatorname{SU}(2)_{\llcorner } \times U(1)_{Y}$ model of weak interactions
- thus direct fermion mass terms (quarks, leptons) are also forbidden.

SUMMARY:

- Electroweak mixing makes predictions about CV, C_{A} (alternatively C_{L}, C_{R}) couplings of the Z boson that can be tested
- different particle species have different couplings
- We can recast the equations of motion in terms of Lagrangians and reintroduce gauge symmetry
- We find that gauge symmetry really doesn't like masses
- Please read chapters 17.4-17.5

