NEUTRINO OSCILLATIONS

GAUGE BOSON FEYNMAN RULES

 The Feynman rule for an incoming(outgoing) vector boson is its polarization vector:

• Relative to the z-axis, we can define $\epsilon_{+\mu} = \frac{1}{\sqrt{2}}(0,1,i,0)$ • for the fermion,

$$\epsilon_{-\mu} = \frac{1}{\sqrt{2}}(0, -1, +i, 0)$$

 $\epsilon_{L\mu} = \frac{1}{m}(p_z, 0, 0, E)$

- for the fermion, we know (in the massless limit):
 - e, v_e come out with energy $M_W/2$
 - e with left helicity, \overline{v}_e with right helicity $\overline{u}_3 \gamma^{\mu} (1 - \gamma^5) v_2 \rightarrow \overline{u}_{2\downarrow} \gamma^{\mu} v_{3\uparrow}$

• We evaluated this combination back in QED

$$\bar{u}_{2\downarrow}\gamma^{\mu}v_{3\uparrow} \to 2E(0, -\cos\theta, -i, \sin\theta)$$

MIXING:

U	С	t	
d	S	b	

- recall the CKM matrix in quark interactions
 - formalizes transitions between generation
 - relation between mass and "flavor" states
 - d' quark is the quark state that couples to u quark

d,s,b

$$V_{ij} \frac{-ig_w}{2\sqrt{2}} \gamma^{\mu} (1 - \gamma^5)$$

W
u,c,t

- The same situation can arise in neutrinos
 - what we have defined as " v_e ", " v_μ " and " v_τ " are the flavour states (analogous to d', s' b')
 - v_1 , v_2 , v_3 are the mass eigenstates analogous to d, s, b

Ve	\mathcal{V}_{μ}	${\cal V}_{{\cal T}}$
e	μ	τ

FLAVOR TRANSITIONS

- Recall that energy eigenstates are "stationary" in QM: $|\psi(t)\rangle \to |\psi(0)\rangle e^{-iEt}$
- a neutrino in a mass eigenstate will stay in the same eigenstate
- However, a flavour state is a linear combination of mass eigenstates: $|\nu_e\rangle = U_{e1}|\nu_1\rangle + U_{e2}|\nu_2\rangle + U_{e3}|\nu_3\rangle = \sum_i U_{ei}|\nu_i\rangle$
 - if we consider a neutrino at rest, we would have:

$$|\nu_e\rangle \to \sum_i U_{ei} \; e^{-im_i \tau} |\nu_i\rangle$$

• proper time τ ,m are the elapsed time, energy in the rest frame

$$m_i \tau = p \cdot x = E_i t - \mathbf{p}_i \cdot \mathbf{x}$$

• so that in other reference frames we can write:

$$|\nu_e\rangle \to \sum_i U_{ei} \ e^{-i(E_i t - \mathbf{p_i} \cdot \mathbf{x})} |\nu_i\rangle$$

KINEMATICS

• If we assume that the flavour state is composed of mass states of common energy E, with E \gg m_i

$$p_i = \sqrt{E^2 - m_i^2} = E\sqrt{1 - \frac{m_i^2}{E^2}} \sim E\left(1 - \frac{m_i^2}{2E^2}\right)$$
$$Et - p_i x \sim Et\left(1 - \frac{m_i^2}{2E}\right)$$

- so then our flavour state evolves as $|\nu_e\rangle \rightarrow \sum_i U_{ei} e^{-i(E_i(t-L) + \frac{m_i^2}{2E}L)} |\nu_i\rangle$
- the first term in the exponential is a common overall phase that can be dropped:

$$|\nu_{\alpha}\rangle \rightarrow \sum_{i} U_{\alpha i} \ e^{-i\frac{m_{i}^{2}}{2E}L}|\nu_{i}\rangle$$

$AMPLITUDE \rightarrow PROBABILITY$

• We can find the amplitude for a $v_{\alpha} \rightarrow v_{\beta}$ transition:

$$\langle \nu_{\beta} | \nu_{\alpha}(L) \rangle = \sum_{i} U_{\alpha i} \ e^{-i \frac{m_{i}^{2}}{2E}L} \langle \nu_{\beta} | \nu_{i} \rangle$$

• if $\langle v_i | v_{\alpha} \rangle = U_{\alpha i}$, then $\langle v_{\beta} | v_i \rangle = = U^*_{\beta i}$ so that

$$\langle \nu_{\beta} | \nu_{\alpha}(L) \rangle = \sum_{i} U_{\alpha i} U_{\beta i}^{*} e^{-i \frac{m_{i}^{2}}{2E}L}$$

• to get a probability, we take $|\langle v_{\beta} | v_{\alpha}(L) \rangle|^2$ and we get

$$P(\nu_{\alpha} \to \nu_{\beta}; L) = \delta_{\alpha\beta}$$

$$-4\operatorname{Re}\left[\sum_{i>j} U_{\alpha i} U_{\beta i}^{*} U_{\alpha j} U_{\beta j}^{*}\right] \sin^{2} \frac{\Delta m_{ij}^{2} L}{4E}$$

$$+2\operatorname{Im}\left[\sum_{i>j} U_{\alpha i} U_{\beta i}^{*} U_{\alpha j} U_{\beta j}^{*}\right] \sin \frac{\Delta m_{ij}^{2} L}{2E}$$

$$\Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2}$$

NEUTRINO OSCILLATIONS

 $P(\nu_{\alpha} \to \nu_{\beta}; L) = \delta_{\alpha\beta}$ $-4\text{Re} \begin{bmatrix} \sum_{i>j} U_{\alpha i} U_{\beta i}^{*} U_{\alpha j} U_{\beta j}^{*} \end{bmatrix} \sin^{2} \frac{\Delta m_{ij}^{2} L}{4E}$ $+2\text{Im} \begin{bmatrix} \sum_{i>j} U_{\alpha i} U_{\beta i}^{*} U_{\alpha j} U_{\beta j}^{*} \end{bmatrix} \sin^{2} \frac{\Delta m_{ij}^{2} L}{\sin \frac{\Delta m_{ij}^{2} L}{2E}}$ $\Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2}$

- "Oscillations": probability is sinusoidal in L/E
- "Amplitude" is determined by mixing matrix U
 - if U is diagonal (i.e. mass eigenstates = flavour eigenstates) then amplitude of oscillation is 0.
- "Wavelength" is determined by $\Delta m_{ij}^2 = m_i^2 m_j^2$
 - non-zero and non-degenerate masses needed for $P(v_{\alpha} \rightarrow v_{\beta}) \neq 0$

NEUTRINO MASS

• Why would one assume that neutrinos are massless?

ANOMALIES:

 $\begin{array}{c} \overset{}{\hookrightarrow} \mu^{\pm} + \nu_{\mu} \\ & \overset{}{\hookrightarrow} e^{\pm} + \nu_{\mu} + \nu_{e} \end{array}$

 $p+N
ightarrow \pi^{\pm} + X$

- Persistent deficit in
 - v_e from the sun
 - v_{μ} produced in the atmosphere
- why do we not see as many neutrinos as expected?

TWO FLAVOR MODEL

• With two flavours, we can write U as

NEUTRINO SOURCES

- Nuclear fission/Fusion
 - solar
 - 3% of sun's energy radiated as neutrinos
 - $10^{11} \bar{v}/cm^2$ /sec on surface of earth
 - reactor:
 - ~5% of reactor power emitted as $\bar{\mathbf{v}}$
 - $10^{20} \bar{v}$ /sec emitted by typical GW reactor
 - Typical energy ~O(MeV)
 - only $\nu_{\rm e}$ charged-current and neutral current interactions visible

- Meson/muon decays
 - e.g. pion decay ($\pi \rightarrow \nu_{\mu} + \mu$)
 - atmospheric neutrinos
 - π/K/µ produced in atmosphere by cosmic ray protons
 - accelerator-based neutrinos
 - π/K/µ produced by high energy protons produced by accelerators
 - Typical energy ~O(GeV)
 - can observe charged current interactions of v_e , v_{μ} , sometimes v_{τ}

NEUTRINO DETECTORS

- Large detector/volume needed to gather neutrino interactions
 - neutrino detectors have long been about scalability
 - massive detectors that can still provide the information we need
 - Neutrino detectors have been produced with:
 - steel from decommissioned battleships
 - mineral oil/scintillator
 - large extruded PVC cells

REACTOR EXPERIMENTS

- detect antineutrinos using "inverse beta decay" $\bar{\nu}_e + p \rightarrow e^+ + n$
- two-step signature pioneered by Reines and Cowan
 - "prompt" signature from positron
 - "delayed" signature from neutron capture
- Due to low energies involved, large liquid scintillator detectors have been the preferred technology
 - large light yield from scintillation for good energy resolution
 - neutron detection from capture process

 $n + p \rightarrow d + \gamma (2.2 \text{ MeV})$

- photon detection can be enhanced by doping with other nuclei with high neutron capture cross section and photon energy emission
- antineutrino energy can be reconstructed as:

$$E_{\bar{\nu}} \sim E_e + \langle E_n \rangle + 0.8 \mathrm{MeV}$$

KAMLAND

- Large liquid scintillator detector in the Kamioka mine (2002-2007)
 - 1 kT of liquid scintillator suspended in pure mineral oil
 - 1879 50 cm photomultiplier tubes to detect scintillation light
- antineutrinos from 55 nuclear reactors in Japan
 - 80% of antineutrinos produced by reactors between 130-220 km

4

• Known distances to reactors allow \bar{v}_e disappearance vs. L/E to be measured

RESULTS

$$P(\nu_e \to \nu_e) = 1 - \sin^2 2\theta \times \sin^2 \Delta m_{21}^2 \frac{L}{4E}$$

- Energy-dependent deficit of \bar{v}_e measured
- Deficit (ratio to expectation without oscillations) versus L/E shows oscillation pattern

SNO

- Large (heavy) water Cherenkov detector 2 km underground in Sudbury, ON
 - "Sudbury Neutrino Observatory"
- 1 kton of heavy water (D₂O) in an acrylic vessel suspended in light water (H₂O)
- viewed by 9456 20 cm photomultiplier tubes
- Observe neutrinos from solar fusion processes

CHERENKOV RADIATION

- Charged particle passing through a dielectric medium (n > 1) induces a EM disturbance
 - If $v > c_n$, the disturbance piles up
 - EM "shock wave" emitted with angle θ_C

$$\cos\theta_C = \frac{c}{nv} = \frac{1}{n\beta}$$

- Analogous to other (mechanical) systems where a disturbance exceeds the propagation velocity
 - e.g. "sonic boom" from supersonic object

NEUTRINO INTERACTIONS AT SNO

- Three channels observed:
- "CC": $v_e + d \rightarrow e + p + p$
 - sensitive only to v_e from the sun
- "NC": $v_x + d \rightarrow v_x + n + p [n + d \rightarrow t + \gamma(6.25 \text{ MeV})]$
 - equally sensitive to all neutrino flavours (v_e , v_{μ} , v_{τ})
- "ES": $v_x + e \rightarrow v_x + e$
 - interactions in all flavors, but $v_{e:} \sigma(v_e) \sim 6.5 \times \sigma(v_{\mu})$ or $\sigma(v_{\tau})$)

Conclusively resolved the "solar neutrino deficit"

ATMOSPHERIC NEUTRINOS

• Atmospheric neutrinos are produced by the interaction of cosmic ray protons:

- Naively, expect a 2:1 ratio of muon (anti)neutrino to electron (anti)neutrino ratio
 - can we test this by identifying muon neutrinos and electron neutrinos?
 - look for muon production (from v_{μ}) and electron production (from v_e).

Super-Kamiokande detector 50 kt WC rector with 11k 20" photosensors

EVIDENCE FOR OSCILLATION

- Neutrino oscillations should have a dependence on the path length from production to detection.
- For atmospheric neutrinos, is related to the "zenith angle" of the neutrino

The Nobel Prize in Physics 2015

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2015 to

Takaaki Kajita

Super-Kamiokande Collaboration University of Tokyo, Kashiwa, Japan

Arthur B. McDonald

Sudbury Neutrino Observatory Collaboration Queen's University, Kingston, Canada

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

WHAT DO WE KNOW?

 v_2

 \mathcal{V}_1

$$\begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} \\ -\sin\theta_{12} & \cos\theta_{12} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} \qquad \begin{pmatrix} \nu_\mu \\ \nu_y \end{pmatrix} = \begin{pmatrix} \cos\theta_{23} & \sin\theta_{23} \\ -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \nu_a \\ \nu_b \end{pmatrix}$$

- From solar measurement:
 - v_e component of v_2 is ~1/3 $\rightarrow \sin^2 \theta_{12} = 1/3$
 - $\theta_{12} \sim 35 \text{ degrees}$
- From KamLAND
 - $\sin^2 2\theta_{12} = 0.85 \rightarrow \theta_{12} \sim 34$ degrees
 - $\Delta m_{21}^2 \sim 7.5 \times 10^{-5} \text{ eV}^2$

- From atmospheric measurement
 - v_{μ} disappearance is ~maximal
 - $\theta_{23} \sim 45$ degrees
 - $\Delta m^2_{ba} \sim 2.5 \text{ x} 10^{-5} \text{ eV}^2$
 - excess of *v*_e not observed:
 - v_y is primarily v_τ

CONTEMPORARY TOPICS

• CP Violation?

$P(\nu_{\alpha} \to \nu_{\beta}; L) = \delta_{\alpha\beta}$ -4Re $\left[\sum_{i>j} U_{\alpha i} U_{\beta i}^{*} U_{\alpha j} U_{\beta j}^{*}\right] \sin^{2} \frac{\Delta m_{ij}^{2} L}{4E}$ +2Im $\left[\sum_{i>j} U_{\alpha i} U_{\beta i}^{*} U_{\alpha j} U_{\beta j}^{*}\right] \sin \frac{\Delta m_{ij}^{2} L}{2E}$

ANSWERS OR MORE QUESTIONS

- Why are quark and lepton mixings so different?
 - is neutrino mixing "maximal"?
- Why are neutrino masses so tiny?
 - quarks/charged leptons masses from Higgs mechanism
 - do neutrinos get mass some other way?

THE MATTER DOMINATED UNIVERSE

 $\frac{\Delta B}{N_{\gamma}} \sim \mathcal{O}(10^{-10})$

SAKHAROV CONDITIONS:

- BARYON NUMBER (B) VIOLATION
- VIOLATION OF C, CP SYMMETRY (CPV)
- DEPARTURE FROM THERMAL EQUILIBRIUM

- Extremely small?
- Extremely large?
 - Known sources of CPV (quark CKM) cannot produce this asymmetry

NEXT TIME

- Chapter 16.1-16.3
- Chapter 17.1-17.3