LECTURE 15: WEAK INTERACTIONS CONTINUED

PHY489/1489

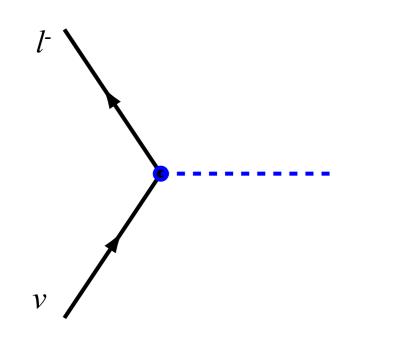
INTRODUCTION

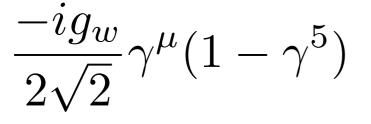
- I hope the midterm went well for everyone
- Solutions are now posted on the website

THE WEAK CHARGED CURRENT

• Feynman rules:

Vertex Factor for Leptons:





 $\frac{-i(g_{\mu\nu} - q_{\mu}q_{\nu}/M_W^2 c^2)}{q^2 - M_W^2 c^2}$

W propagator

WEAK VS. QED

 $\begin{array}{ll} \bar{\psi}\psi & \text{scalar} \\ \bar{\psi}\gamma^5\psi & \text{pseudoscalar} \\ \bar{\psi}\gamma^\mu\psi & \text{vector} \\ \bar{\psi}\gamma^\mu\gamma^5\psi & \text{pseudovector} \\ \bar{\psi}\gamma^\mu\gamma^5\psi & \text{pseudovector} \end{array}$ $\bar{\psi}\sigma^{\mu\nu}\psi$ antisymmetric tensor

QED vertex $-ig_e\gamma^\mu$

Weak CC vertex

$$\frac{-ig_w}{2\sqrt{2}}\gamma^\mu(1-\gamma^5)$$

- Vertex:
 - coupling constant

•
$$\gamma^{\mu}$$
 vs. $\gamma^{\mu} - \gamma^{\mu} \gamma^{5}$

• charge: W carries one unit

photon propagator

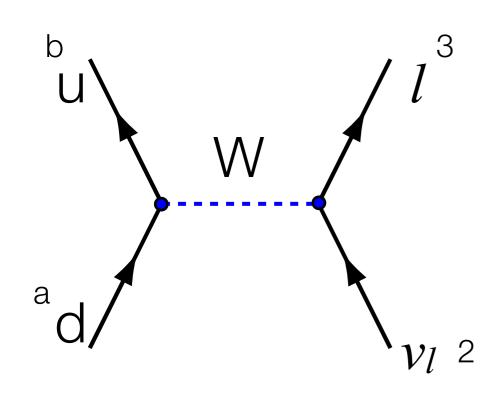
 $\frac{-ig_{\mu\nu}}{q^2}$

W propagator
$$\frac{-i(g_{\mu\nu}-q_{\mu}q_{\nu}/M_W^2c^2)}{q^2-M_W^2c^2}$$

- Propagator
 - massive particle (3 polarizations)
 - at low energies: $q \ll M_w c^2$

$$\frac{-i(g_{\mu\nu} - q_{\mu}q_{\nu}/M_W^2 c^2)}{q^2 - M_W^2 c^2} \Rightarrow \frac{ig_{\mu\nu}}{M_W^2 c^2}$$

EXAMPLE: PION DECAY



Lepton fermion leg

$$\left[\bar{u}_3 \frac{-ig_w}{2\sqrt{2}} \gamma^\mu (1-\gamma^5) v_2\right]$$

Quark Fermion leg

$$\left[\bar{v}_b \frac{-ig_w}{2\sqrt{2}}\gamma^{\nu}(1-\gamma^5)u_a\right]$$

$$\left[\bar{v}_b \frac{-ig_w}{2\sqrt{2}} \gamma^{\nu} (1-\gamma^5) u_a\right] \Rightarrow F^{\nu} = f_{\pi} p^{\nu}$$

Propagator

$$\int \frac{1}{(2\pi)^4} d^4q \quad \frac{ig_{\mu\nu}}{M_W^2 c^2}$$

$$\mathcal{M} = \frac{g_W^2}{8M_W^2 c^2} \left[\bar{u}_3 \gamma^\mu (1 - \gamma^5) v_2 \right] f_\pi p_\mu$$

THE MATRIX ELEMENT
so consider
only
$$\mu=0$$
 here
 $M = \frac{g_W^2}{8M_W^2 c^2} \left[\bar{u}_3 \gamma^{\mu} (1-\gamma^5) v_2 \right] f_{\pi} \underline{p}_{\mu} = \frac{g_W^2 f_{\pi} m_{\pi} c}{8M_W^2 c^2} \left[\bar{u}_3 \gamma^0 (1-\gamma^5) v_2 \right]$

$$= \frac{g_W^2 f_{\pi} m_{\pi} c}{8M_W^2 c^2} \left[u_3^{\dagger} \gamma^0 \gamma^0 (1-\gamma^5) v_2 \right] = \frac{g_W^2 f_{\pi} m_{\pi} c}{8M_W^2 c^2} \left[u_3^{\dagger} (1-\gamma^5) v_2 \right] = \frac{g_W^2 f_{\pi} m_{\pi} c}{4M_W^2 c^2} \left[u_3^{\dagger} v_2 \gamma \right]$$

$$\stackrel{1}{=} \frac{1}{2} (1-\gamma^5) v_2 \Rightarrow v_{2\gamma}$$

$$v_{\uparrow} = \sqrt{E_2 + m_2} \begin{pmatrix} -\frac{|\mathbf{p}_2|}{E_2 + m_2} s \\ -\frac{|\mathbf{p}_2|}{E_2 + m_2} ce^{i\phi} \\ -\frac{s}{ce^{i\phi}} \end{pmatrix}^{c=\cos\theta/2} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$$

• Evaluate u_3v_2 with two configurations of u_3

$$u_{\uparrow} = \sqrt{E_3 + m_3} \begin{pmatrix} c \\ se^{i\phi} \\ \frac{|\mathbf{p}_3|}{E_3 + m_3} c \\ \frac{|\mathbf{p}_3|}{E_3 + m_3} se^{i\phi} \end{pmatrix} \Rightarrow \sqrt{E_3 + m_3} \begin{pmatrix} 1 \\ 0 \\ \frac{|\mathbf{p}_3|}{E_3 + m_3} c \\ 0 \end{pmatrix} \qquad \qquad u_{\downarrow} = \sqrt{E_3 + m_3} \begin{pmatrix} -s \\ ce^{i\phi} \\ \frac{|\mathbf{p}_3|}{E_3 + m_3} s \\ -\frac{|\mathbf{p}_3|}{E_3 + m_3} ce^{i\phi} \end{pmatrix} \Rightarrow \sqrt{E + m_3} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -\frac{|\mathbf{p}_3|}{E_3 + m_3} \end{pmatrix}$$

$$u_{3\uparrow}^{\dagger}v_{2\uparrow} = \sqrt{E_3 + m_3} \left(1 - \frac{|\mathbf{p}_3|}{E_3 + m_3} \right) \qquad \qquad u_{3\downarrow}^{\dagger}v_{2\uparrow} = 0$$
$$\mathcal{M} = \frac{g_W^2 f_\pi m_\pi}{4M_W^2} \sqrt{E_3 + m_3} \sqrt{|\mathbf{p}_3|} \left(1 - \frac{|\mathbf{p}_3|}{E_3 + m_3} \right)$$

COMPLETING THE CALCULATION

RATIOS:

- Consider the two decays:
 - $\pi^- \rightarrow e^- + \overline{v}_e$

•
$$\pi \rightarrow \mu + \overline{\nu}_{\mu}$$

 $\Gamma = \frac{g_W^4}{256M_W^4 m_\pi^3} f_\pi^2 m_3^2 (m_\pi^2 - m_3^2)^2$

$$\frac{\Gamma_e}{\Gamma_{\mu}} = \frac{m_e^2 (m_{\pi}^2 - m_e^2)^2}{m_{\mu}^2 (m_{\pi}^2 - m_{\mu}^2)^2}$$

- Using the masses
 - $m_{\pi} = 139.57 \text{ MeV}$
 - $m_{\mu} = 105.65 \text{ MeV}$
 - $m_e = 0.511 \text{ MeV}$

$$\frac{\Gamma_e}{\Gamma_{\mu}} = 1.28 \times 10^{-4}$$

PIENU

 $\frac{\Gamma_e}{\Gamma_{\mu}} = 1.2344 \pm 0.0023 (\text{stat}) \pm 0.0019 (\text{syst.}) \times 10^{-4}$

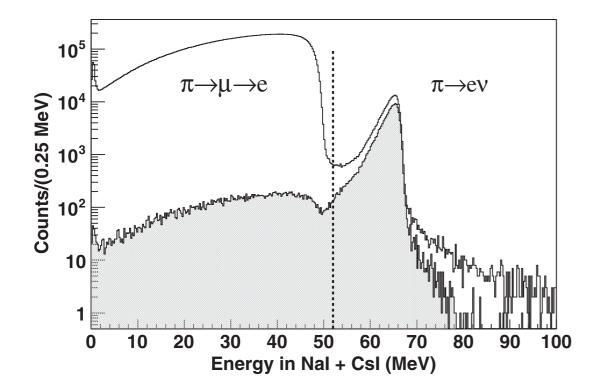
Improved Measurement of the $\pi \rightarrow e\nu$ Branching Ratio

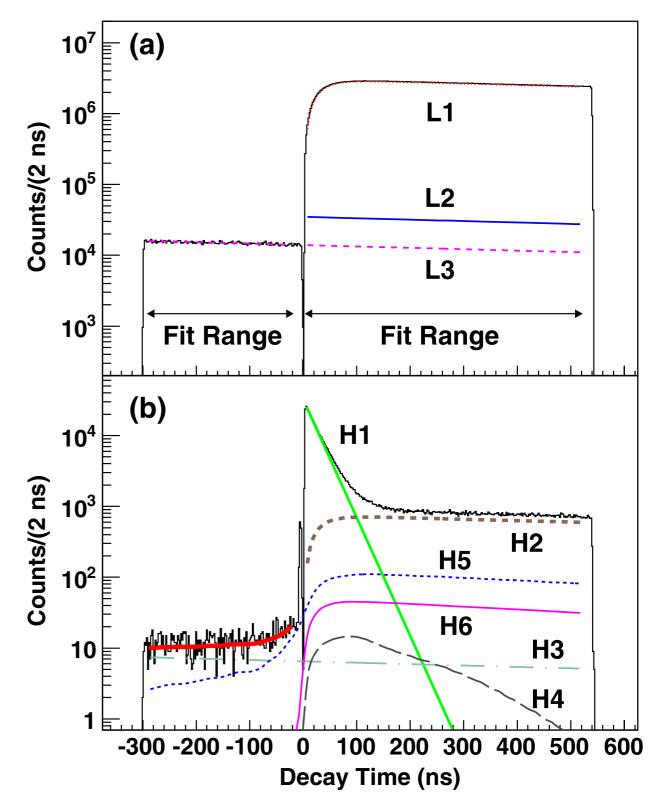
A. Aguilar-Arevalo,¹ M. Aoki,² M. Blecher,³ D. I. Britton,⁴ D. A. Bryman,⁵ D. vom Bruch,⁵ S. Chen,⁶ J. Comfort,⁷ M. Ding,⁶ L. Doria,⁸ S. Cuen-Rochin,⁵ P. Gumplinger,⁸ A. Hussein,⁹ Y. Igarashi,¹⁰ S. Ito,² S. H. Kettell,¹¹ L. Kurchaninov,⁸ L. S. Littenberg,¹¹ C. Malbrunot,^{5,*} R. E. Mischke,⁸ T. Numao,⁸ D. Protopopescu,⁴ A. Sher,⁸ T. Sullivan,⁵ D. Vavilov,⁸ and K. Yamada²

(PIENU Collaboration)

¹Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Mexico, Distrito Federal 04510 México
 ²Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
 ³Physics Department, Virginia Tech, Blacksburg, Virginia 24061, USA
 ⁴Physics Department, University of Glasgow, Glasgow G12 8QQ, United Kingdom
 ⁵Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
 ⁶Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China
 ⁷Physics Department, Arizona State University, Tempe, Arizona 85287, USA
 ⁸TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
 ⁹University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
 ¹⁰KEK, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801, Japan
 ¹¹Brookhaven National Laboratory, Upton, New York 11973-5000, USA (Received 8 June 2015; published 13 August 2015)

A new measurement of the branching ratio $R_{e/\mu} = \Gamma(\pi^+ \to e^+\nu + \pi^+ \to e^+\nu\gamma)/\Gamma(\pi^+ \to \mu^+\nu + \pi^+ \to \mu^+\nu\gamma)$ resulted in $R_{e/\mu}^{exp} = [1.2344 \pm 0.0023(\text{stat}) \pm 0.0019(\text{syst})] \times 10^{-4}$. This is in agreement with the standard model prediction and improves the test of electron-muon universality to the level of 0.1%.





FORM OF INTERACTION

• We said this is a "vector - axial vector" interaction

$$\mathcal{M} = \frac{g_W^2}{8M_W^2 c^2} \left[\bar{u}_3 \gamma^\mu (1 - \gamma^5) v_2 \right] f_\pi p_\mu$$

- What would a:
 - vector interaction look like?
 - scalar interaction?
- The form of the interaction affects the decay rate
 - if we assume a scalar interaction we would get

$$\frac{\Gamma_e}{\Gamma_\mu} = \sim 5$$

CONNECTION

- Consider our various propagators
 - photons $\frac{-ig_{\mu
 u}}{q^2}$

• Wboson
$$\frac{-i(g_{\mu\nu} - q_{\mu}q_{\nu}/M_W^2c^2)}{q^2 - M_W^2c^2} \sim \frac{ig_{\mu\nu}}{M_W^2c^2}$$

- These actually arise partly from "completeness" relations: $\sum_{s} \epsilon_{s}^{*\mu}(q) \epsilon_{s}^{\nu}(q) = -g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{m^{2}} \qquad \sum_{s} \epsilon_{s}^{*\mu}(q) \epsilon_{s}^{\nu}(q) = -g^{\mu\nu}$
- (Pseudo)scalar interactions likewise imply a (pseudo) scalar mediator/propagator i

$$\Rightarrow \frac{i}{q^2 - M^2}$$

HELICITY SUPPRESSION

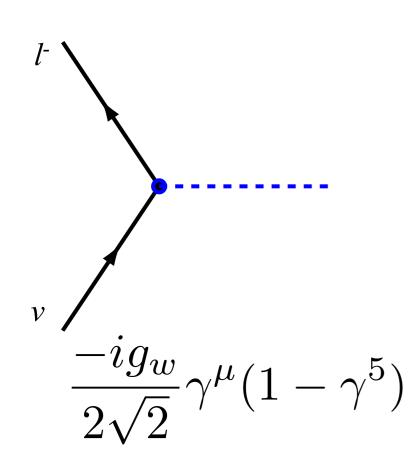
- For massless particles, chiral states are also helicity states, i.e.
 - we concluded $\frac{1}{2}(1-\gamma^5)v_2 \Rightarrow v_{2\uparrow}$ • but we could have also concluded
 - but we could have also concluded $\bar{u}_3 \frac{1}{2} \gamma^{\mu} (1 - \gamma^5) \Rightarrow \bar{u}_3 \frac{1}{2} (1 + \gamma^5) \gamma^{\mu} \Rightarrow u_3^{\dagger} \gamma^0 \frac{1}{2} (1 + \gamma^5) \gamma^{\mu} \Rightarrow \left(\frac{1}{2} (1 - \gamma^5) u_3\right)^{\dagger} \gamma^0 \gamma^{\mu} \Rightarrow \bar{u}_{3L} \gamma^{\mu}$
- i.e. neutrino is right helicity, muon is left helicity
 - impossible to conserve angular momentum so the decay will not happen!
 - this is apparent also from the matrix element

$$\mathcal{M} = \frac{g_W^2 f_\pi m_\pi}{4M_W^2} \sqrt{E_3 + m_3} \sqrt{|\mathbf{p_3}|} \left(1 - \frac{|\mathbf{p_3}|}{E_3 + m_3}\right)$$

- The decay only happens to the extent that the chiral projection of one of the particles departs from a helicity state due to its mass.
 - the closer the particles are to the massless limit, the more suppression

$$\frac{\Gamma_e}{\Gamma_{\mu}} = \frac{m_e^2 (m_K^2 - m_e^2)}{m_e^2 (m_K^2 - m_{\mu}^2)} = 2.57 \times 10^{-5}$$

WEAK CC FOR LEPTONS

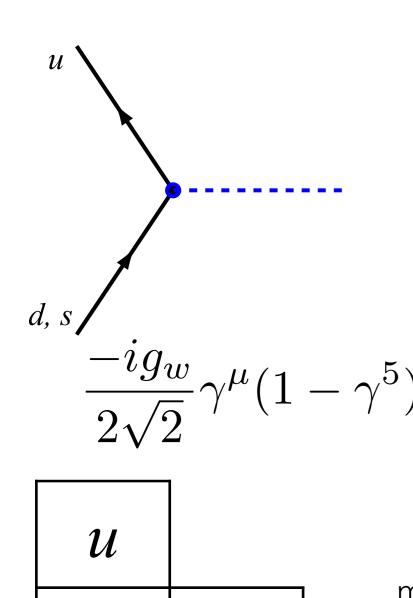


v_e	\mathcal{V}_{μ}	$\mathcal{V}_{\mathcal{T}}$
е	μ	τ

• Reasonably simple

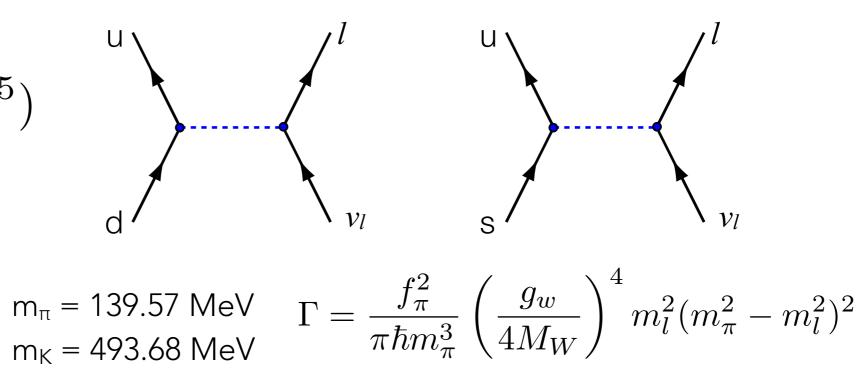
 charged lepton connects to corresponding neutrino

WEAK INTERACTION OF QUARKS



S

- Step back to 1960s when we "knew" of three quarks
- Noticed that decays of "strange' particles was much slower than expected
- We can compare pion/kaon decays



 $\frac{\Gamma(K^- \to \mu^- + \nu_{\mu})}{\Gamma(\pi^- \to \mu^- + \nu_{\mu})} = \left(\frac{m_{\pi}}{m_K}\right)^3 \left(\frac{m_K^2 - m_{\mu}^2}{m_{\pi}^2 - m_{\mu}^2}\right)^2 \sim 18$

CONCLUSIONS

- Please read 12.1, 14.1-3, 14.7
- Are you interested in neutrino oscillations?
- You might consider looking at Appendix D