LECTURE 14: PARITY VIOLATION AND THE WEAK INTERACTION

PHYSICS 489/1489

PARITY

- The operation by which we reverse spatial coordinates: $\mathbf{x} \rightarrow -\mathbf{x}$
- Consider a vector **V**: parity reverses it to -**V**
 - $P(\mathbf{V}) = -\mathbf{V}$
- Another "vector" quantity, the "axial" or "pseudo"vector:
 - consider **c**= **a** x **b**, where **a**, **b** are vectors
 - $P(\mathbf{c}) = P(\mathbf{a} \times \mathbf{b}) = -\mathbf{a} \times -\mathbf{b} = \mathbf{a} \times \mathbf{b} = \mathbf{c}$
- Parity symmetry can be preserved if quantities are constructed entirely as vectors or as axial vectors

• consider:

$$\vec{F} = m\vec{a}$$
 $\vec{L} = \vec{r} \times \vec{p}$

PARITY EIGENSTATES

- If a state is an eigenvector of the parity operator: $P|A\rangle = p|A\rangle$
 - where p is the eigenvalue. If we apply P again, we have: $P(P|A\rangle) = P(p|A\rangle) = pP|A\rangle = p^2|A\rangle$
 - applying P twice brings us back to the initial state, so

$$PP = P^2 = I$$
 $p = \pm 1$

 The parity eigenvalue is conserved if parity is a symmetry of the system (e.g. . [H, P]= 0)

PARITY OF A BOUND STATE

- The bound state (e.g. meson = quark + antiquark) has two components that determine its parity
 - "intrinsic" parity of the particle
 - quarks/leptons have intrinsic parity 1, antiquarks/antileptons -1
 - parity due to the wave function of the particle
 - $(-1)^l$ where *l* is the orbital momentum

$$Y_0^0(\theta,\varphi) = \frac{1}{2}\sqrt{\frac{1}{\pi}} \qquad Y_1^0(\theta,\varphi) = \frac{1}{2}\sqrt{\frac{3}{\pi}}\cos\theta \qquad Y_2^{-2}(\theta,\varphi) = \frac{1}{4}\sqrt{\frac{15}{2\pi}}\sin^2\theta e^{-2i\varphi} \\ Y_2^{-1}(\theta,\varphi) = \frac{1}{2}\sqrt{\frac{15}{2\pi}}\sin\theta\cos\theta e^{-i\varphi} \\ Y_1^1(\theta,\varphi) = \frac{-1}{2}\sqrt{\frac{3}{2\pi}}\sin\theta e^{i\varphi} \qquad Y_2^1(\theta,\varphi) = \frac{-1}{2}\sqrt{\frac{15}{2\pi}}\sin\theta\cos\theta e^{i\varphi} \\ Y_2^0(\theta,\varphi) = \frac{1}{4}\sqrt{\frac{5}{\pi}}(3\cos^2\theta - 1)$$

- Total parity is the product of the two
 - parity eigenvalue is unchanged by an interaction if it conserves parity

 $Y_2^2(\theta,\varphi) = \frac{1}{4}\sqrt{\frac{15}{2\pi}}\sin^2\theta \,e^{2i\varphi}$

EXAMPLES

- Pion: quark + antiquark in s = 0, l = 0 state:
 - $P = 1 \times -1 \times (-1)^0 = -1$
- ρ : quark, anti-quark in s=1, l = 0 state
 - $P = 1 \times -1 \times (-1)^0 = -1$
- Two pions in l = 0 state
 - $P = -1 \times -1 \times (-1)^0 = 1$
- Two pions in l = 1 state
 - $P = -1 \times -1 \times (-1)^1 = -1$
- Decay of ρ : since s (and J=l+s) = 1, we must have l = 1 in final state
 - two pions is OK: $P = -1 \times -1 \times (-1)^1 = -1$
 - three pions violates parity: $-1 \times -1 \times (-1)^1 = +1$

MXING VECTORS + PSEUDOVECTORS

geometrically obvious that something has changed

- two things that were pointing in the same direction are now pointing in opposite directions
- One can formalize this by considering a dot vector:

•
$$P(\mathbf{V} \cdot \mathbf{A}) = -\mathbf{V} \cdot \mathbf{A} \neq \mathbf{V} \cdot \mathbf{A}$$

- or add a vector and psuedovector
 - $P(|V+A|) = |-V+A| \neq |V+A|$
- Parity is violated by an observable/interaction that:
 - correlates a vector and a pseudovector
 - is the sum of a vector and a pseudovector

" θ/τ " PUZZLE

 Imagine two particles identical in every way, but decay to different parity eigenstates:

- Coincidence that two such particles exist?
- T. D. Lee, C. N. Yang:
 - θ/τ are the same particle
 - parity not conserved in weak decays

DEMONSTRATION OF PARITY VIOLATION

- β decay in polarized 60 Co
 - cool ⁶⁰Co atoms to polarize them
 - magnetic moment/spin become aligned
 - angular momentum is a pseudo vector
 - momentum of positron is a vector
 - Correlation would demonstrate parity violation
 - N.B. left shows "mirror" transformation
 - parity transformation + rotation by 180 degrees

WEAK INTERACTIONS

• Fundamental vertices

- Weak charged current:
 - couples charged lepton (e, μ , τ) into its corresponding neutrino (v_e , v_{μ} , v_{τ})
 - change a "down"-type quake (d, s, b) into an up-type quark (u,c,t)
- Weak neutral current:
 - particle identity does not change
 - same particle in and out

THE WEAK CHARGED CURRENT

• Feynman rules:

Vertex Factor for Leptons:

 $\frac{-i(g_{\mu\nu} - q_{\mu}q_{\nu}/M_W^2 c^2)}{q^2 - M_W^2 c^2}$

W propagator

WEAK VS. QED

 $\begin{array}{ll} \bar{\psi}\psi & {\rm scalar} \\ \bar{\psi}\gamma^5\psi & {\rm pseudoscalar} \\ \bar{\psi}\gamma^\mu\psi & {\rm vector} \\ \bar{\psi}\gamma^\mu\gamma^5\psi & {\rm pseudovector} \end{array}$ $\bar{\psi}\sigma^{\mu\nu}\psi$ antisymmetric tensor

QED vertex $-iq_e\gamma^\mu$

Weak CC vertex

$$\frac{-ig_w}{2\sqrt{2}}\gamma^\mu(1-\gamma^5)$$

- Vertex:
 - coupling constant

•
$$\gamma^{\mu}$$
 vs. $\gamma^{\mu} - \gamma^{\mu} \gamma^{5}$

• charge: W carries one unit

photon propagator

 $\frac{-ig_{\mu\nu}}{a^2}$

- Propagator
 - massive particle (3 polarizations)
 - at low energies: $q \ll M_{M/c}^2$

$$\frac{-i(g_{\mu\nu} - q_{\mu}q_{\nu}/M_W^2 c^2)}{q^2 - M_W^2 c^2} \Rightarrow \frac{ig_{\mu\nu}}{M_W^2 c^2}$$

EXAMPLE: MUON DECAY:

upper fermion leg

$$\left[\bar{u}_3 \frac{-ig_w}{2\sqrt{2}} \gamma^{\mu} (1-\gamma^5) u_1\right] \quad (2\pi)^4 \delta(p_1 - q - p_3)$$

- lower fermion leg
 - $\left[\bar{u}_4 \frac{-ig_w}{2\sqrt{2}} \gamma^{\mu} (1-\gamma^5) v_2\right] \quad (2\pi)^4 \delta(q-p_2-p_4)$
- Propagator

$$\int \frac{1}{(2\pi)^4} d^4q \quad \frac{ig_{\mu\nu}}{M_W^2 c^2}$$

$$\frac{-ig_W^2}{8M_W^2c^2} \left[\bar{u}_3\gamma^{\mu}(1-\gamma^5)u_1 \right] \left[\bar{u}_4\gamma_{\mu}(1-\gamma^5)v_2 \right] \times (2\pi)^4 \delta(p_1-p_2-p_3-p_4) \\ \frac{g_W^2}{8M_W^2c^2} \left[\bar{u}_3\gamma^{\mu}(1-\gamma^5)u_1 \right] \left[\bar{u}_4\gamma_{\mu}(1-\gamma^5)v_2 \right]$$

INVERSE MUON DECAY:

• upper fermion leg

$$\left[\bar{u}_4 \frac{-ig_W}{2\sqrt{2}} \gamma^{\nu} (1-\gamma^5) u_2\right] (2\pi)^4 \delta^4 (p_2+q-p_4)$$

lower fermion leg

$$\left[\bar{u}_3 \frac{-ig_W}{2\sqrt{2}} \gamma^{\mu} (1-\gamma^5) u_1\right] (2\pi)^4 \delta^4 (p_1 - q - p_3)$$

• Propagator $\int \frac{1}{(2\pi)^4} d^4 q \quad \frac{ig_{\mu\nu}}{M_W^2 c^2}$ $\frac{-ig_W^2}{8M_W^2 c^2} \left[\bar{u}_3 \gamma^{\mu} (1-\gamma^5) u_1 \right] \left[\bar{u}_4 \gamma_{\mu} (1-\gamma^5) u_2 \right] \times (2\pi)^4 \delta(p_1 + p_2 - p_3 - p_4)$

$$\mathcal{M} = \frac{g_W^2}{8M_W^2 c^2} \left[\bar{u}_3 \gamma^{\mu} (1 - \gamma^5) u_1 \right] \left[\bar{u}_4 \gamma_{\mu} (1 - \gamma^5) u_2 \right]$$

 ν_{μ} p₂ p₄ p₄ p₄ p₄ p₁ p₃

 ν_e

 $\nu_{\mu} + e^- \to \mu^- + \nu_e$

COMPARISON

• The similarity is not a coincidence

EXAMPLE: PION DECAY

Lepton fermion leg

$$\left[\bar{u}_3 \frac{-ig_w}{2\sqrt{2}} \gamma^\mu (1-\gamma^5) v_2\right]$$

Quark Fermion leg

$$\left[\bar{v}_b \frac{-ig_w}{2\sqrt{2}}\gamma^{\nu}(1-\gamma^5)u_a\right]$$

$$\left[\bar{v}_b \frac{-ig_w}{2\sqrt{2}} \gamma^{\nu} (1-\gamma^5) u_a\right] \Rightarrow F^{\nu} = f_{\pi} p^{\nu}$$

Propagator

$$\int \frac{1}{(2\pi)^4} d^4q \quad \frac{ig_{\mu\nu}}{M_W^2 c^2}$$

$$\mathcal{M} = \frac{g_W^2}{8M_W^2 c^2} \left[\bar{u}_3 \gamma^\mu (1 - \gamma^5) v_2 \right] f_\pi p_\mu$$

MIDTERM:

- Two parts:
 - Short answer: a few questions about
 - fundamental particles, interactions, "strengths"
 - Feynman diagrams for basic process
 - basic considerations of phase space, form factors, etc.
 - no detailed calculations, all conceptual
 - Feynman rules, γ matrices
 - some calculations using general properties of γ matrices
 - all explicit forms of spinors, matrices that are needed will be provided
 - Feel free to bring:
 - 1 formula sheet
 - calculator

$$\mathcal{MM}^{*} = \left(\frac{g^{2}}{8M_{W}^{2}c^{2}}\right)^{2} \left[\bar{u}_{3}\gamma^{\mu}(1-\gamma^{5})v_{2}\right] \left[\bar{u}_{3}\gamma^{\nu}(1-\gamma^{5})v_{2}\right]^{*} f_{\pi}^{2}p_{\mu}p_{\nu}$$
$$\sum_{a, b \text{ spins}} \left[\bar{u}(a)\Gamma_{1}u(b)\right] \left[\bar{u}(a)\bar{\Gamma}_{2}u(b)\right]^{*} = \operatorname{Tr}\left[\Gamma_{1}(\not p_{b}+m_{b}c)\bar{\Gamma}_{2}(\not p_{a}+m_{a}c)\right]$$

$$\langle |\mathcal{M}|^2 \rangle = \frac{g_W^4}{64M_W^4 c^4} f_\pi^2 p_\mu p_\nu$$

Tr $\left[\gamma^\mu (1 - \gamma^5) (\not p_2) \gamma^\nu (1 - \gamma^5) (\not p_3 + m_l c) \right]$

- We've done this trace already: $Tr \Rightarrow 8 \times \left[p_2^{\mu} p_3^{\nu} + p_2^{\nu} p_3^{\mu} - g^{\mu\nu} p_2 \cdot p_3 - i \epsilon^{\mu\nu\lambda\sigma} p_{2\lambda} p_{3\sigma} \right]$
- So:

$$\langle |\mathcal{M}|^2 \rangle = \frac{f_\pi^2 g_W^4}{8M_W^4 c^4} \left[2 \times (p \cdot p_2)(p \cdot p_3) - p^2 (p_2 \cdot p_3) \right]$$

EVALUATING THE MATRIX

- If we work in the centre of mass frame, the pion is at rest:
 - $p_{\pi}^{\mu} = (m_{\pi}, 0)$
 - so in the expression, we only need to consider $\mu = 0$

$$\mathcal{M} = \frac{g_W^2}{8M_W^2 c^2} \left[\bar{u}_3 \gamma^\mu (1 - \gamma^5) v_2 \right] f_\pi p_\mu \quad \Rightarrow \frac{g_W^2}{8M_W^2 c^2} \left[\bar{u}_3 \gamma^0 (1 - \gamma^5) v_2 \right] f_\pi m_\pi$$
$$\bar{u}_3 = u_3^\dagger \gamma^0$$
$$\Rightarrow \frac{g_W^2}{8M_W^2 c^2} \left[u_3^\dagger \gamma^0 (1 - \gamma^5) v_2 \right] f_\pi m_\pi$$

Improved Measurement of the $\pi \rightarrow e\nu$ Branching Ratio

A. Aguilar-Arevalo,¹ M. Aoki,² M. Blecher,³ D. I. Britton,⁴ D. A. Bryman,⁵ D. vom Bruch,⁵ S. Chen,⁶ J. Comfort,⁷ M. Ding,⁶ L. Doria,⁸ S. Cuen-Rochin,⁵ P. Gumplinger,⁸ A. Hussein,⁹ Y. Igarashi,¹⁰ S. Ito,² S. H. Kettell,¹¹ L. Kurchaninov,⁸ L. S. Littenberg,¹¹ C. Malbrunot,^{5,*} R. E. Mischke,⁸ T. Numao,⁸ D. Protopopescu,⁴ A. Sher,⁸ T. Sullivan,⁵ D. Vavilov,⁸ and K. Yamada²

(PIENU Collaboration)

¹Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Mexico, Distrito Federal 04510 México
²Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
³Physics Department, Virginia Tech, Blacksburg, Virginia 24061, USA
⁴Physics Department, University of Glasgow, Glasgow G12 8QQ, United Kingdom
⁵Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
⁶Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China
⁷Physics Department, Arizona State University, Tempe, Arizona 85287, USA
⁸TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
⁹University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
¹⁰KEK, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801, Japan
¹¹Brookhaven National Laboratory, Upton, New York 11973-5000, USA (Received 8 June 2015; published 13 August 2015)

A new measurement of the branching ratio $R_{e/\mu} = \Gamma(\pi^+ \to e^+ \nu + \pi^+ \to e^+ \nu \gamma) / \Gamma(\pi^+ \to \mu^+ \nu + \pi^+ \to \mu^+ \nu \gamma)$ resulted in $R_{e/\mu}^{exp} = [1.2344 \pm 0.0023 (\text{stat}) \pm 0.0019 (\text{syst})] \times 10^{-4}$. This is in agreement with the standard model prediction and improves the test of electron-muon universality to the level of 0.1%.

