ANNOUNCEMENTS

• Problem set 2 due today at 1700
 • please note again notes provided by Randy which are on the course website
• Midterm next Thursday (3 November)
 • covers material up to chapter 7
 • Short questions on Feynman diagrams, phase space, basic properties of electromagnetic, weak, strong interactions
 • One question with amplitude/cross section calculation
SYMMETRY

• An operation on something that leaves it unchanged
• Mathematically, symmetries form “groups”
 • closure: one operation followed by another is another symmetry operation
 • identity: doing nothing is a symmetry operation
 • inverse: for each operation, there is another symmetry operation that undoes it.
 • associativity: $O_1(O_2O_3) = (O_1O_2)O_3$
• Noether’s theorem:
 • symmetry in a system \leftrightarrow conservation law
NOETHER’S THEOREM IN QM

- We can express the operation on a state as an operator:

 \[|\psi\rangle \rightarrow U|\psi\rangle \quad |U\psi\rangle \equiv U|\psi\rangle \]

- In order for the physical predictions to be unchanged by the operation, it must preserve:
 - Normalization \(\langle \psi|\psi \rangle \rightarrow \langle U\psi|U\psi \rangle \)
 \[
 \langle U\psi|U\psi \rangle \rightarrow \langle \psi|U^\dagger U\psi \rangle
 \]
 - Can see that U must be unitary, i.e. \(U^\dagger U = 1 \)

- Eigenvalues of operators
 - Particularly the Hamiltonian \([H, U] = 0 \)
CONTINUOUS GROUPS

• A continuous group is one that can be parameterized by continuous parameter(s):

\[U \rightarrow U(\theta) \]

• Examples:

 • rotations ("special" orthogonal matrices)
 • e.g. matrices where \(O^T O = O O^T = 1 \)
 • with determinant 1

 • “SO(N)”: special orthogonal matrices of dimension N

 • “special unitary” matrices:
 • unitary matrices with determinant 1
 • “SU(N)”: special unitary matrices of dimension N
GENERATORS

- For a continuous group, we can consider an infinitesimal transformation (in a Taylor expansion sense)
 \[U(\epsilon) = 1 + i\epsilon G + \mathcal{O}(\epsilon^2) + \ldots \]
- The operator G is called a "generator" of the group
- The unitarity of U requires G to be Hermitian
 - \[G = G^\dagger \]
- Since the infinitesimal transformation is an element of the group
 - \[[H, G] = 0 \]
- Noether’s theorem in quantum mechanics:
 - The observable corresponding to G is conserved
GLOBAL GAUGE SYMMETRY:

• From Electromagnetism, we have “gauge” transformations:

 • Maxwell’s laws are invariant under:

\[
\phi = A_0 \rightarrow A_0 - \dot{\chi} \quad A \rightarrow A + \nabla \chi \quad A_\mu \rightarrow A_\mu - \partial_\mu \chi
\]

• Consider the Dirac equation \((i\not{\partial} - m)\psi = 0\)

 • if we rotate the phase of \(\psi\) through all of space-time

\[\psi \rightarrow e^{i\theta} \psi\]

 • the Dirac equation remains valid (just an overall phase)

 • (n.b. May be easier to see if we consider the Lagrangian

\[
\mathcal{L} = i\hbar \bar{\psi} \gamma^\mu \partial_\mu \psi - mc \bar{\psi} \psi
\]

\[\psi \rightarrow e^{i\theta} \psi \quad \bar{\psi} \rightarrow e^{-i\theta} \bar{\psi}\]
LOCAL GAUGE TRANSFORMATION

• Now consider a more radical transformation:
 • Adjust the phase of the field as a function of space time
 • i.e. \(\theta \) becomes a function of \(x \)
 \[
 \theta \rightarrow \theta(x) \quad e^{-i\theta} \Rightarrow e^{-i\theta(x)}
 \]
 • this is called a "local gauge transformation"

• now consider the Dirac equation
 • \(\partial_\mu \psi \Rightarrow \partial_\mu (e^{i\theta(x)}\psi) = e^{i\theta} (\partial_\mu \psi) + i(\partial_\mu \theta)e^{i\theta} \psi \)
 • \((i\partial - m)\psi = 0 \Rightarrow e^{i\theta} \times [i\partial - (\partial \theta) - m] \psi = 0\)
 • extra term in the equation!
LOCAL GAUGE SYMMETRY

- Promote local gauge transformations to a symmetry
 - we require the equation to be invariant under local
gauge transformations (i.e. space-time dependent phase
corrections)

- The symmetry/invariance can be restored if:
 - we add a term to the equation
 \[(i\phi - m)\psi = 0 \Rightarrow (i\phi - q\hat{A} - m)\psi = 0\]
 - where:
 \[A_\mu \rightarrow A_\mu - \frac{1}{q}\partial_\mu \theta(x) \quad \psi \rightarrow e^{i\theta(x)}\psi\]
 \[(i\phi - q\hat{A} - m)\psi = 0\]
 \[\Rightarrow e^{i\theta(x)} \times [i\phi - (\partial\theta) - q\hat{A} + \phi\theta - m] \psi = 0\]
WHAT HAPPENED:

• We required the Dirac equation to be invariant under local gauge transformation
• this introduced a new field A with its own transformation
• Note:
 • A is a “vector” particle: i.e. A_μ
 • its transformation is the same as the EM gauge transformation
 • it couples to the Dirac field with a strength controlled by q
 • (it must be massless to preserve the symmetry)
• It has all the properties of a photon interacting with a Dirac particle with charge q
• electromagnetism is a “U(1) local gauge theory”
LINGO:

• "gauge symmetry" = "gauge invariance":
 • generalization of "phase symmetry"

• "covariant derivative":
 \[\partial_{\mu} \rightarrow \partial_{\mu} + iqA_{\mu} \]

• "gauge boson"
 • vector field introduced for local gauge invariance

• "gauge theory"
 • particle system that has a gauge symmetry
GENERALIZATION:

- Consider the group SU(2)
 - “2x2 unitary matrices with determinant 1”
 - we can parameterize the group as follows:
 \[U = U(\vec{\theta}) = e^{i \frac{g}{2} \vec{\theta} \cdot \vec{\sigma}} \]
 - where \(\vec{\sigma} \) are Pauli matrices

Note:

- we can consider \(\vec{\sigma} \) as generators of the group
- there are three parameters which parametrize the group
- the matrices act on two-component vectors/spinors

\[
\begin{align*}
\sigma_1 &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\
\sigma_2 &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \\
\sigma_3 &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\end{align*}
\]
Now consider a theory in which we postulate:

- "local gauge invariance under SU(2)"
- θ parameters become space-time dependent

\[\vec{\theta} \rightarrow \vec{\theta}(x) \]

- the "space/objects" we act on have two component

\[
\psi \equiv \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \rightarrow e^{i \frac{g}{2} \vec{\theta} \cdot \vec{\sigma}} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}
\]

- for Dirac particles, this means that we are considering a pair of Dirac fields (each with 4 components) that transform under SU(2) operators
GAUGE INVARIANCE

• Like before, gauge invariance requires new fields because of the space-time dependence of $\theta(x)$

• so we introduce three fields (A^i) that transform as follows:

$$\vec{A}_\mu \to \vec{A}_\mu - \frac{1}{2} \partial_\mu \theta - \frac{g}{2} \epsilon_{ijk} \theta_i A^j_\mu$$

• one can show that this preserves the invariance under the SU(2) transformations for this equation of motion

$$(i\not{\partial} - \frac{g}{2} \vec{\sigma} \cdot \vec{A} - m)\psi = 0$$

• the extra term in the A transformation results from the fact that the σ matrices do not commute.
WHAT HAPPENED:

• We now have a system of two fermions, each described by the Dirac equation

• local gauge symmetry requires three fields to cancel the “leftover” terms from the transformation

• we have three new gauge fields which mediate interactions

\[\frac{g}{2} \vec{\sigma} \cdot \vec{A} \psi \]

• the additional term

\[\frac{g}{2} \vec{\theta} \times \vec{A}_\mu \]

• leads to interactions between the gauge bosons themselves

• i.e. the bosons are “charged”
FOUNDATIONS:

- Quantum field theory arises from
 - special relativity
 - quantum mechanics
- with Local Gauge Invariance
 - we introduce interactions via bosons required to maintain the symmetry
 - however, the bosons must be massless
- Note the difference between:
 - the symmetry group (i.e. possible operations)
 - the objects on which they act
 - imposing symmetries on their behaviour (equations of motion, Lagrangian, etc.)
NEXT TIME

• Please read 10.5, 10.6

• You can skip 10.5.1 unless it helps you understand 10.5.2