PHYSICS 489/1489
LECTURE 11:
ELECTRON-PROTON SCATTERING

ELECTRON-QUARK SCATTERING

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{8 Q^{2} e^{4}}{\left(p_{1}-p_{3}\right)^{4}}\left[\left(p_{1} \cdot p_{2}\right)\left(p_{3} \cdot p_{4}\right)+\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)-\left(M^{2} c^{2}\right)\left(p_{1} \cdot p_{3}\right)\right]
$$

$$
\text { with } m \sim 0
$$

$p_{1}=E_{1}(1,0,0,1)$

$$
p_{2}=M(0,0,0,0)
$$

$$
\begin{aligned}
& \theta \quad p_{3}=E_{3}(1,0, \sin \theta, \cos \theta) \\
& \left(p_{1}-p_{3}\right)^{2} \sim-2 p_{1} \cdot p_{3}=-4 E_{1} E_{3} \sin ^{2} \frac{\theta}{2}=q^{2} \equiv- \\
& \left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{M^{2} e^{4}}{E_{1} E_{3} \sin ^{4} \frac{\theta}{2}}\left[\cos ^{2} \frac{\theta}{2}+\frac{Q^{2}}{2 M} \sin ^{2} \frac{\theta}{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{M}=\frac{Q e^{2}}{\left(p_{1}-p_{3}\right)^{2}}\left[\bar{u}_{3} \gamma^{\mu} u_{1}\right]\left[\bar{u}_{4} \gamma_{\mu} u_{2}\right] \\
& \begin{aligned}
&|\mathcal{M}|^{2}=\frac{Q^{2} e^{4}}{\left(p_{1}-p_{3}\right)^{4}}\left[\bar{u}_{3} \gamma^{\mu} u_{1}\right]\left[\bar{u}_{3} \gamma^{\nu} u_{1}\right]^{*}\left[\bar{u}_{4} \gamma_{\mu} u_{2}\right]\left[\bar{u}_{4} \gamma_{\nu} u_{2}\right]^{*} \\
&\left.\sum_{s_{a}, s} \bar{s}_{4} \bar{u}_{u} \Gamma_{1} u_{b}\right]\left[\bar{u}_{a} \bar{\Gamma}_{2} u_{b}\right]^{*} \\
& \Rightarrow \operatorname{Tr}\left[\Gamma_{1}\left(\phi_{b}+m_{b} c\right) \bar{\Gamma}_{2}\left(\phi_{a}+m_{a} c\right)\right]
\end{aligned} \\
& \sum_{\text {spins }}|\mathcal{M}|^{2}=\frac{e^{4}}{\left(p_{1}-p_{3}\right)^{4}} \operatorname{Tr}\left[\gamma^{\mu}\left(\phi_{1}+m c\right) \gamma^{\nu}\left(\phi_{3}+m c\right)\right] \operatorname{Tr}\left[\gamma_{\mu}\left(\phi_{2}+M c\right) \gamma_{\nu}\left(\phi_{4}+M c\right)\right]
\end{aligned}
$$

A FEW NOTES

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\frac{1}{64 \pi^{2}}\left(\frac{E_{3}}{M E_{1}}\right)^{2}|\mathcal{M}|^{2} \\
& =\frac{e^{4}}{64 \pi^{2}} \frac{1}{E_{1}^{2} \sin ^{4} \frac{\theta}{2}} \frac{E_{3}}{E_{1}}\left[\cos ^{2} \frac{\theta}{2}+\frac{Q^{2}}{2 M} \sin ^{2} \frac{\theta}{2}\right]=\frac{\alpha^{2}}{4} \frac{1}{E_{1}^{2} \sin ^{4} \frac{\theta}{2}} \frac{E_{3}}{E_{1}}\left[\cos ^{2} \frac{\theta}{2}+\frac{Q^{2}}{2 M} \sin ^{2} \frac{\theta}{2}\right]
\end{aligned}
$$

- Note that there is only one degree of freedom in the scattering apart from the incident electron energy E_{1} :
- $E_{3}=\frac{E_{1} M}{M+E_{1}(1-\cos \theta)}$
- $Q^{2}=\frac{2 M E_{1}^{2}(1-\cos \theta)}{M+E_{1}(1-\cos \theta)}$
- i.e. if we know one of E_{3}, θ, or Q^{2}, the others are determined.

POINT-LIKE PARTICLES

- So far, we have focussed on point particles
- as far as we know, electrons and quarks do not have any spatial extent
- What if the particle we are dealing with is not fundamental?

FORM FACTORS: APPROACH 1

- Accounting for spatial distribution of an arbitrary charge distribution:

$$
\begin{aligned}
& \underbrace{\boldsymbol{P}_{1}^{\prime}}_{R=r-r^{\prime}} \\
& \mathcal{M}=\int d^{3} \mathbf{r} \psi_{3}^{*}(\mathbf{r}) \underset{\uparrow}{V(\mathbf{r})} \psi_{1}(\mathbf{r}) \\
& \mathbf{q}=\mathbf{p}_{1}-\mathbf{p}_{3} \\
& \uparrow_{V(\mathbf{r})}=Q \int d^{3} \mathbf{r}^{\prime} \frac{\rho\left(\mathbf{r}^{\prime}\right)}{4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
& \mathcal{M}=Q \int d^{3} \mathbf{r} \int d^{3} \mathbf{r}^{\prime} e^{i \mathbf{q} \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} e^{i \mathbf{q} \cdot\left(\mathbf{r}^{\prime}\right)} \frac{\rho\left(\mathbf{r}^{\prime}\right)}{4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
& =Q \int d^{3} \mathbf{R} \frac{e^{i \mathbf{q} \cdot \mathbf{R}}}{4 \pi|\mathbf{R}|} \int d^{3} \mathbf{r}^{\prime} \rho\left(\mathbf{r}^{\prime}\right) e^{i \mathbf{q} \cdot\left(\mathbf{r}^{\prime}\right)}
\end{aligned}
$$

ANALYSIS

$$
\mathcal{M}=Q \int d^{3} \mathbf{R} \frac{e^{i \mathbf{q} \cdot \mathbf{R}}}{4 \pi|\mathbf{R}|} \int d^{3} \mathbf{r}^{\prime} \rho\left(\mathbf{r}^{\prime}\right) e^{i \mathbf{q} \cdot\left(\mathbf{r}^{\prime}\right)}
$$

- First term is matrix element for a point charge

$$
\begin{aligned}
\mathcal{M} & =Q \int d^{3} \mathbf{r} \int d^{3} \mathbf{r}^{\prime} e^{i \mathbf{q} \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} e^{i \mathbf{q} \cdot\left(\mathbf{r}^{\prime}\right)} \frac{\rho\left(\mathbf{r}^{\prime}\right)}{4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
& =Q \int d^{3} \mathbf{r} e^{i \mathbf{q} \cdot \mathbf{r}} \frac{1}{4 \pi|\mathbf{r}|} \quad \rho\left(\mathbf{r}^{\prime}\right)=\delta(\mathbf{0})
\end{aligned}
$$

- Express as a modification of the matrix element of a point charge.

$$
\mathcal{M}=\mathcal{M}_{0} \times F\left(\mathbf{q}^{2}\right)
$$

- also consider the distribution of magnetic moment to get another factor

BACK TO THE CROSS SECTION

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{0}=\frac{\alpha^{2}}{4} \frac{1}{E_{1}^{2} \sin ^{4} \frac{\theta}{2}} \frac{E_{3}}{E_{1}}\left[\cos ^{2} \frac{\theta}{2}+\frac{Q^{2}}{2 M} \sin ^{2} \frac{\theta}{2}\right] \quad \tau=\frac{Q^{2}}{4 M^{2}} \\
& \quad \Rightarrow \frac{\alpha^{2}}{4 E_{1}^{2} \sin ^{4} \frac{\theta}{2}} \frac{E_{3}}{E_{1}}\left[\frac{G_{E}^{2}\left(Q^{2}\right)+\tau G_{M}^{2}\left(q^{2}\right)}{1+\tau} \cos ^{2} \frac{\theta}{2}+2 \tau G_{M}^{2}\left(Q^{2}\right) \sin ^{2} \frac{\theta}{2}\right]
\end{aligned}
$$

- Connecting to the previous discussion
- If $\mathrm{Q}^{2} \ll \mathrm{M}^{2}$ then to a good approximation $\mathrm{Q}^{2} \sim \mathrm{q}^{2}$

$$
Q^{2}=\mathbf{q}^{2}-\left(E_{1}-E_{3}\right)^{2}
$$

$$
\begin{gathered}
\left.E_{1}-E_{3}\right)^{2} \\
\left.E_{1}-E_{3}=\frac{Q^{2}}{2 M} \quad \Rightarrow Q^{2}\left(1+\frac{Q^{2}}{4 M^{2}}\right)=\mathbf{q}^{2} .\right\} .
\end{gathered}
$$

PARMETRIZATIONS

- Measure the form factors as a function of q^{2} or Q^{2}
- effectively measuring the Fourier transform of the charge/magnetic moment of the proton
- most results use the "dipole" parametrization

$$
F\left(q^{2}\right)=\left(\frac{1}{1+\frac{q^{2}}{M^{2}}}\right)^{2}
$$

Fig. 8. An example of a model which fits the experimental values of F^{2}. This model gives the proton an exponential charge density and an exponential magnetic-moment gives the proton an exponential charge density and an exponential magnetic
density with rms radii $0.80 \times 10^{-13} \mathrm{~cm}$. Other close models fit equally well.

SEPARATING THE FORM FACTORS

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E_{1}^{2} \sin ^{4} \frac{\theta}{2}} \frac{E_{3}}{E_{1}}\left[\frac{G_{E}^{2}\left(Q^{2}\right)+\tau G_{M}^{2}\left(Q^{2}\right)}{1+\tau} \cos ^{2} \frac{\theta}{2}+2 \tau G_{M}^{2}\left(Q^{2}\right) \sin ^{2} \frac{\theta}{2}\right]
$$

- Electric form factor $\left(\mathrm{G}_{\mathrm{E}}\right)$ is dominant at low $\mathrm{Q}^{2} \quad \tau=\frac{Q^{2}}{4 M^{2}}$
- Magnetic form factor $\left(G_{M}\right)$ is dominant at high Q^{2}
- General strategy:
- Vary beam energy
- Measure cross section vs. angle at a fixed Q^{2}
- compare relative to "Mott" Cross section:

$$
\left(\frac{d \sigma}{d \Omega}\right)_{0}=\frac{\alpha^{2}}{4 E_{1}^{2} \sin ^{4} \frac{\theta}{2}} \frac{E_{3}}{E_{1}} \cos ^{2} \frac{\theta}{2}
$$

FORM FACTORS: APPROACH II

- Another approach to form factors:

Lepton current L ${ }^{\mu \nu}$

$$
\sum_{\text {spins }}|\mathcal{M}|^{2}=\frac{e^{4}}{\left(p_{1}-p_{3}\right)^{4}} \operatorname{Tr}\left[\gamma^{\mu}\left(\not p_{1}+m c\right) \gamma^{\nu}\left(\not p_{3}+m c\right)\right] \operatorname{Tr}\left[\gamma_{\mu}\left(\not p_{2}+M c\right) \gamma_{\nu}\left(\not p_{4}+M c\right)\right]
$$

quark current $\mathrm{H}_{\mu \nu}$

- What form can the hadronic current take?
- it must carry the Lorentz indices $\mu \nu$
- Lorentz quantities with indices: $\mathrm{g}_{\mu v}, \mathrm{p}_{2}, \mathrm{p}_{4}, \mathrm{q}$
- $p_{4}=p_{2}+q$
- can be a function of Lorentz scale quantities (masses, q^{2})

$$
H_{\mu \nu}=H_{1}\left(q^{2}\right) g_{\mu \nu}+H_{2}\left(q^{2}\right) p_{2 \mu} p_{2 \nu}+H_{3}\left(q^{2}\right) q_{\mu} q_{\nu}+H_{4}\left(q^{2}\right)\left(p_{2 \mu} q_{\nu}+p_{2 \nu} q_{\mu}\right)
$$

- Other considerations (charge conservation) lead to relations that reduce the number of independent functions to two

CONTEMPORARY TOPICS

Deviations for dipole for.
Can we obtain a more fundamental understanding of the proton form

"PARTONS"

Fig. I: $\left(d^{2} \sigma / d \Omega d E\right) / \sigma_{m x 1}$ in GeV^{-1}, vs. q^{2} for $W=2,3$ and 3.5 GeV . The lines drawn through the data are meant to guide the eye. Also shown is the cross section for elastic e-p scattering divided by $\sigma_{\text {moth }}(d \sigma / d S) / \sigma_{\text {Mont }}$. calculated for $\theta=10^{\circ}$, using the dipole form factor. The relatively slow variation with q^{2} of the inelastic cross section compared with the elastic cross section is clearly shown.

- strong high Q^{2} scattering in high energy e-p scattering points to substructure in proton
- "partons"
- would later connect to "quarks"

IGNORANCE

- Form factors are a way to parametrize things we don't know or cannot predict fundamentally.
- connect it to some physical picture (e.g charge distribution)
- or appeal to things we do know (Lorentz symmetry) to provide a generalized framework for what it should be
- Typically arise when we have strongly interacting systems
- e.g. bound quarks in baryons and mesons
- can't predict a priori all the dynamics, etc.
- decays of hadrons also have form factors
- depending on the degrees of freedom, the form factor will have different kinematic dependences.
- "blob" \leftrightarrow "form factor"

NEXT TIME

- Reading
- 10.1-10.3
- 10.4
- 10.5, 10.5.2, 10.6
- slight departure to original plan, will update.
- Problem Set 2 due next Tuesday

