Discrete Symmetries

H. A. Tanaka

Overview

- Thus far we have talked about "continuous symmetries"
- In particular:
- angular momentum conservation results from symmetry of rotations (isotropy)
- isospin symmetry results from symmetry of rotations in isospin space
- Today we will talk about two "discrete" operations
- parity (spacial inversion)
- charge conjugation (particle/anti-particle exchange)

Parity:

- Parity: the operation by which we reverse the spatial coordinates: $\mathrm{x} \rightarrow-\mathrm{x}$
- Consider a vector V: under parity, it "reverses" to -V
- $P(\mathbf{V})=-\mathbf{V}$
- There is another "vector" quantity called an "axial" or "pseudo" vector
- consider $\mathbf{c}=\mathbf{a} \times \mathbf{b}$, where \mathbf{a}, \mathbf{b} are vectors
- $\mathrm{P}(\mathbf{c})=\mathrm{P}(\mathbf{a} \times \mathbf{b})=-\mathbf{a} \times-\mathbf{b}=\mathbf{a} \times \mathbf{b}=\mathbf{c}$
- Axial/pseudo-vectors don't change sign under parity!
- In respecting parity as a symmetry, we are okay if quantities are constructed entirely as vectors or as axial vectors:

CN

- Examples:

$$
\vec{F}=m \vec{a} \quad \vec{L}=\vec{r} \times \vec{p}
$$

Parity Eigenvalues

- If a state is an eigenvector of the parity operator we have:

$$
P|A\rangle=p|A\rangle
$$

- where p is the eigenvalue. If we apply p again, we have

$$
P(P|A\rangle)=P(p|A\rangle)=p P|A\rangle=p^{2}|A\rangle
$$

- but applying P twice brings us back to the initial state

$$
P P=P^{2}=I \quad p= \pm 1
$$

Parity of a Bound State:

- Consider a bound state of quarks and anti-quarks (i.e. meson or baryon)
- Two components of parity:
- "intrinsic parity" of the particles:
- quarks have intrinsic parity 1, anti-quarks have intrinsic parity -1
- "Orbital" due to the wavefunction of the quarks:
- $(-1)^{\prime}$ where $/$ is the orbital angular momental

$$
Y_{1}^{-1}(\theta, \varphi)=\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \sin \theta e^{-i \varphi}
$$

$$
Y_{0}^{0}(\theta, \varphi)=\frac{1}{2} \sqrt{\frac{1}{\pi}} \quad Y_{1}^{0}(\theta, \varphi)=\frac{1}{2} \sqrt{\frac{3}{\pi}} \cos \theta
$$

$$
Y_{1}^{1}(\theta, \varphi)=\frac{-1}{2} \sqrt{\frac{3}{2 \pi}} \sin \theta e^{i \varphi}
$$

$$
\begin{aligned}
& Y_{2}^{-2}(\theta, \varphi)=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{-2 i \varphi} \\
& Y_{2}^{-1}(\theta, \varphi)=\frac{1}{2} \sqrt{\frac{15}{2 \pi}} \sin \theta \cos \theta e^{-i \varphi} \\
& Y_{2}^{1}(\theta, \varphi)=\frac{-1}{2} \sqrt{\frac{15}{2 \pi}} \sin \theta \cos \theta e^{i \varphi} \\
& Y_{2}^{0}(\theta, \varphi)=\frac{1}{4} \sqrt{\frac{5}{\pi}}\left(3 \cos ^{2} \theta-1\right) \\
& Y_{2}^{2}(\theta, \varphi)=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{2 i \varphi}
\end{aligned}
$$

- The total parity is the product of intrinsic and orbital
- Parity eigenvalue is the same before and after if interaction conserves parity

Examples

- The pion: quark, anti-quark in $\mathrm{s}=0, \mathrm{I}=0$ state:
- $\mathrm{P}=1 \times-1 \times(-1)^{0}=-1$
- ρ : quark, anti-quark in $\mathrm{s}=1, \mathrm{l}=0$ state
- $\mathrm{P}=1 \times-1 \times(-1)^{0}=-1$
- Two pions in $\mathrm{I}=0$ state:
- $P=-1 \times-1 \times(-1)^{0}=1$
- Two pions in $\mathrm{I}=1$ state
- $\mathrm{P}=-1 \times-1 \times(-1)^{1}=-1$
- Decay of ρ : since $s=1(\mathrm{~J}=1)$, we must have $\mathrm{l}=1$ in final state
- two pions is OK (parity is the same) $\mathrm{P}=-1 \times-1 \times(-1)^{1}=-1$
- three pions violates parity (opposite parities) $-1 \times-1 \times-1 \times(-1)^{1}=1$

Mixing Vectors and Pseudovectors

- two things which were point in the same direction are now pointing in opposite directions!
- One way to formalize this is to take the dot product of a vector, pseudovector
- $P(\mathbf{V} \cdot \mathbf{A})=-\mathbf{V} \cdot \mathbf{A} \neq \mathbf{V} \cdot \mathbf{A}$
- Another thing we can do is add vectors and pseudo-vectors.
- Magnitude is conserved under parity so long as we add only vectors or only pseudovectors:
- $\mathrm{P}\left(\left|\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}}\right|\right)=\left|-\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}\right|=\left|\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}}\right|$
- $P\left(\left|\mathbf{A}_{1}+\mathbf{A}_{2}\right|\right)=\left|\mathbf{A}_{1}+\mathbf{A}_{2}\right|$
- But $P(|\mathbf{V}+\mathbf{A}|)=|-\mathbf{V}+\mathbf{A}| \neq|\mathbf{V}+\mathbf{A}|$
- An observable that correlates a vector and an pseudovector or an interaction that involves the sum of a vector and an pseudovector violates parity!

日/ $\boldsymbol{\tau}$ Puzzle

- There were two particles that were identical in every way (charge, mass, spin, etc.) but decayed to different parity eigenstates:

$$
\begin{array}{llll}
\theta^{+} & \rightarrow & \pi^{+}+\pi^{0} & \left(P=(-1)^{2}=1\right) \\
\tau^{+} & \rightarrow & \pi^{+}+\pi^{0}+\pi^{0} & \left(P=(-1)^{3}=-1\right) \\
& \rightarrow & \pi^{+}+\pi^{+}+\pi^{-} & \left(P=(-1)^{3}=-1\right)
\end{array}
$$

- Is it just a coincidence that two such particles exist?
- Modern understanding:
- Parity violation is an inherent feature of weak decays
- θ / τ are the same particle $\left(K^{+}\right)$

Demonstration of Parity Violation:

- β decay in polarized Cobalt 60
- Cool Co ${ }^{60}$ atoms and polarize their angular momentum.
- Angular momentum is a pseudo vector
- Momentum of positrons emitted in β decay is a vector
- Correlation between the two demonstrates
 parity violation

The Neutrino:

- Ultimate manifestation of parity violation:
- (assume for now that the neutrino is massless)
- Neutrinos can be classified as "left-handed" and "right-handed" based on the orientation of their spin with their motion
- Same as "left-handed" and "right-handed" polarization of light
- Left-handed neutrinos interact in the weak interaction, right-handed neutrinos do not.
- Since neutrinos interact only via the weak interaction, the right-handed neutrino doesn't interact at all! (except maybe via gravity)
- actually:
- we will see that a different quantity called "chirality" is actually what determines weak interaction coupling, but for ~massless particles, chirality ~ helicity).

Pion Decay and Parity Violation:

- Define the "helicity" of a neutrino: $\vec{s} \cdot \vec{v}$
- The following assumes that the neutrino is massless:
- helicity $=-1$ ("left-handed"): spin and velocity are antiparallel
- helicity $=+1$ ("right-handed")
- Consider the decay of a π^{+}at rest:

- Since the π^{+}is spinless, the μ^{+}and v must have the same helicity
- Like ${ }^{60} \mathrm{Co}$, the direction of the e^{+}in μ^{+}decay is correlated with the spin of the muon:

$$
\mu^{+} \rightarrow e^{+}+\nu_{e}+\bar{\nu}_{\mu}
$$

- this itself is a manifestation of parity violation
- if neutrinos are emitted with both helicity, the μ^{+}will not be polarized and there will be no correlation in the e^{+}direction with the muon direction
- if neutrino are emitted with only one helicity, the μ^{+}will be polarized

"Charge Conjugation":

- The operation of "charge conjugation" flips all the "internal" quantum numbers of the state:
- electric charge, color, lepton number
- turns a particle into its corresponding anti-particle
- "Kinematic" properties such as energy/momentum, angular momentum (including spin) are unchanged.
- Examples:
- C(electron) \rightarrow positron
- $\mathrm{C}($ proton $) \rightarrow$ antiproton
- C(photon) \rightarrow photon
- $\mathrm{C}\left(\pi^{+}\right) \rightarrow \pi^{-}$
- $C\left(C\left(\pi^{+}\right)\right) \rightarrow C\left(\pi^{-}\right)=\pi^{+}: C^{2}=1$

C Eigenvalue:

- Since $C^{2}=1$, the eigenvalues of the C operator must be ± 1
- The assignment of eigenvalues to particular states is conventiondependent.
- It is customary to assign $C|\gamma\rangle=-|\gamma\rangle$
- This is because charges create electromagnetic fields and these (along with the fields) switch sign with C
- By considering $\pi^{0} \rightarrow \gamma+\gamma$ we can assign $C\left|\pi^{0}\right\rangle=+\left|\pi^{0}\right\rangle$
- But once we assign this, we can't have: $\pi^{0} \rightarrow \gamma+\gamma+\gamma$

CP:

- C is manifestly broken in the weak interaction along with parity:

- We wish to have a symmetry between processes and their anti-particle ("conjugate") counterparts
- C does not allow this e.g. left-handed anti-neutrinos don't exist
- Combined operation of C and P would restore the symmetry.
- Historically, people wanted to establish a symmetry between processes and their anti-matter counterparts. By flipping the parity along with charge conjugation, one could restore a symmetry (at least for these processes)

Pion Decay in terms of C, P and CP :

- Through the combined operation of C and P (aka CP), the π^{+}decay process can be related to π^{-}decay

The Neutral Kaon System:

- There are two types of neutral kaons produced in strong interactions

$$
\left|K^{0}\right\rangle \rightarrow|\bar{s} d\rangle \quad\left|\bar{K}^{0}\right\rangle \rightarrow|s \bar{d}\rangle
$$

- As flavor eigenstates (definite strangeness), we can produce them as follows:

$$
\begin{aligned}
& \pi^{-}+p \rightarrow \Lambda+K^{0} \\
& \pi^{-}+p \rightarrow n+n+\bar{\Lambda}+\bar{K}^{0} \\
& \pi^{+}+p \rightarrow p+K^{+}+\bar{K}^{0}
\end{aligned}
$$

- After production, the two states can "mix" via the following processes

Consequences of Mixing:

- After some time, kaons are no longer in a state of definite flavor
- (i.e. they are no longer purely K^{0} or \bar{K}^{0})
- Being the lightest strange particle, they can decay only weakly
- Assuming that CP is conserved in the weak interaction, construct CP eigenstates (i.e. states with CP eigenvalues)
- Consider the transformation properties of the states

$$
\begin{array}{ll}
C\left|K^{0}\right\rangle=\left|\bar{K}^{0}\right\rangle & P\left|K^{0}\right\rangle=-\left|K^{0}\right\rangle \\
C\left|\overline{K^{0}}\right\rangle=\left|K^{0}\right\rangle & P\left|\overline{K^{0}}\right\rangle=-\left|\bar{K}^{0}\right\rangle
\end{array}
$$

- We can then construct the following CP eigenstates:

$$
\begin{array}{ll}
\left|K_{1}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right] & C P\left|K_{1}\right\rangle=\frac{1}{\sqrt{2}}\left[-\left|\bar{K}^{0}\right\rangle+\left|K^{0}\right\rangle\right]=\left|K_{1}\right\rangle \\
\left|K_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right] & C P\left|K_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[-\left|\bar{K}^{0}\right\rangle-\left|K^{0}\right\rangle\right]=-\left|K_{2}\right\rangle
\end{array}
$$

Decay Modes:

- Consider the final state of two pions:

$K \rightarrow \pi \pi$	$C: 1 \times 1$	$P:(-1) \times(-1)$	$C P: 1 \times 1=1$
$K \rightarrow \pi \pi \pi$	$C: 1 \times 1$	$P:(-1) \times(-1) \times(-1)$	$C P: 1 \times(-1)=-1$

- CP conservation:
- K_{1} can decay to $\pi \pi$, but not $\pi \pi \pi$,
- K_{2} can decay to $\pi \pi \pi$, but not $\pi \pi$
- Due to the reduced phase space, K_{2} has a much longer lifetime than K_{1}
- Experimentally: $\tau_{1}=5.11 \times 10^{-8} \mathrm{~s}$

$$
\tau_{2}=8.95 \times 10^{-11} \mathrm{~s}
$$

- If we wait long enough, K_{1} will decay away and leave only K_{2}

Time Evolution and Matter Effects

- After some time, we are left with only K_{2}

$$
\left|K_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle+\left|\overline{K^{0}}\right\rangle\right]
$$

- despite starting with strange state $\left(\mathrm{K}^{0}\right)$ we now have an equal mixture of strange and anti-strange.
- These behave differently in strong interactions (just like the strange interactions which produced the kaons in the first place).
- For instance, the following preserves strangeness

$$
\bar{K}^{0}+p \rightarrow \Lambda+\pi^{+}
$$

- there is no corresponding process for K^{0}, one must produce additional strange particles that increases the threshold; below this, the K^{0} passes through without attenuating.
- By passing a beam of K_{2} through material, one can eliminate the \bar{K}^{0} part of the wavefunction leaving only K^{0}.

Regeneration

- Recall that:

$$
\left|K_{1}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right] \quad\left|K_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle+\left|\overline{K^{0}}\right\rangle\right]
$$

- so that

$$
\left|K^{0}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|K_{1}\right\rangle+\left|K_{2}\right\rangle\right]
$$

- the short-lived K_{1} has reappeared!
- By waiting, we can make K_{1} go away and leave K_{2}
- By passing K_{2} through material, we can absorb the $\overline{\mathrm{K}}^{0}$ component and make K_{1} come back!

CP Violation:

- Recall K_{2} cannot decay to $\pi^{+} \pi^{-}$if CP is conserved
- We can create a pure beam of K_{2} by "waiting" long enough. If we see $\mathrm{K}_{2} \rightarrow \pi^{+} \pi^{-}$decay, we have evidence for CP violation.
- Cronin + Fitch: produce beam of K_{2} and look for $\pi \pi$ decay by reconstructing $\pi^{+} \pi-$. If there is a third pion, momentum will unbalanced and mass will not be $\mathrm{M}_{\mathrm{k}}=497.65 \mathrm{MeV} / \mathrm{c}^{2}$

$\cos \theta$
$\theta=$ angle of $p_{\pi \pi}$ relative to direction of K_{2} beam 45 ± 10 events consistent with $\pi \pi$ decay. Estimate 2×10^{-3} of all decays are CP violating

Note presence of helium bag. Question at conference:
Could there be a (dead) fly in your He bag?

Summary

- We introduced discrete symmetries that involve "flipping" quantities:
- Parity: "flip" the spatial coordinates: $x \rightarrow-x$
- Charge conjugation: "flip" the internal quantum numbers (charge, baryon number, etc.)
- We found two classes of objects with well-defined parity:
- vectors: switch sign (like momentum, spatial coordinates, etc.)
- axial/pseudovectors: do not switch sign (angular momentum, etc.)
- correlations or anything that correlates vector and pseudo vector quantities violates parity symmetry
- this was observed in

