Lecture 6: Symmetries in Quantum Mechanics
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Outline

* Introduce symmetries and their relevance to physics in general
« Examine some simple examples
- Consequences of symmetries for physics
* groups and matrices
- Study angular momentum as a symmetry group
- commutation relations
 simultaneous eigenstates of angular momentum
 adding angular momentum: highest weight decomposition
 Clebsch-Gordan coefficients:
- what are they?
- how to calculate or find their values.
- Warning: this may be a particularly dense lecture (fundamental QM ideas)

 You should have seen this before in auantum mechanics



Symmetries

- symmetry: an operation (on something) that leaves it unchanged
- rotations/reflections: triangles (isosceles, equilateral), square, rectangle
- translation: (crystal lattice)
- discrete/continuous: rotations of a square vs. a circle
- Mathematically, symmetries form mathematical objects called groups:
- closure: 2 symmetry operations make another one (member of the group)
- identity: doing nothing is a symmetry operation (member of the group)

- inverse: for each operation, there is another one that undoes it (i.e.
operation + inverse is equivalent to the identity)

- Associativity: R1(R2R3)= (R1R2)R3
* NOther’s Theorem:
« Symmetry in a system corresponds to a conservation law

- Space and translation symmetry — conservation of ?

- Rotational symmetry — conservation of ?



Matrices

« Symmetry operations can often be expressed (“represented”) by matrices

» The composition of two operations translates into matrix multiplication

- How do group properties (closure, identity, inverse, associativity) translate?
« Some important groups of matrices in physics:

« U(N): N x N unitary matrices, U-'=U™

- SU(N): U(N) matrices with determinant 1

* O(N): N x N orthogonal matrices: real matrices with O- =0T

« SO(N): O(N) matrices with determinant 1

 The rotation group and angular momentum are fundamentally associated with
the group SU(2) (~SO(3)) and its representations.

« “2X2 unitary matrices with determinant 1”

- Groups have larger dimension representations (i.e. NxN matrices) with the
same structure. In SU(2), these correspond to systems with different total
angular momentum.



Commutation Relations:

« Matrix multiplication is order-dependent!

* Generally: AB#BA 0 1 I 0\ (0 -1
1o/ Vo =1/ {1 o
- Call AB -BA the commutator of A, B
- [A,B]= AB-BA (1 O>><<O 1):(0 1)
« Quantum Mechanics: 0 -1 10 -1 0

- Observable quantities correspond to operators (matrices), eigenvalues

- A state with a well-defined value for an observable is an eigenvector of the
corresponding operator. The value is the eigenvalue for the eigenvector.

 Eigenvectors with different eigenvalues are orthogonal

« For two observables, if the order of the measurement matters, then a state
cannot simultaneously be an eigenvector of both operators

- Example:
* [X, px] = ivh : X, px cannot simultaneously have well-defined values

- More generally, we can say [xi, pj] = djih



Playing around with the Commutator

« At home, you should convince yourself of the following:

- [A,B] = -[B,A]

* [A, B+C] = [A,B] + [A,C]
- [A+B, C] =[A,C] + [B,C]
* [ALA] =0

- [A,BC] =[A, B] C + B [A,C]
- [AB,C]=A[B,C]+[A,C]B
- [A, A=A A" =0




Commutation Relations for Angular Momentum

- We can express angular momentum in terms of its classical counterparts and
iIntroduce a new notation:

L=7Xp— Li = €;,T;pk

where the “completely antisymmetric tensor” €k is defined by:
- gijk=11f1, |, k are an even permutation of 1, 2, 3 = (X,y,2)
- gijk=-11f1, |, k are odd permutation of (x, y, z)

« gijk=0 otherwise (if any of i, j, k are the same)

_ pay attention to what commutes
» Examine [Lx, Lyl = [y pz -z py, Zpx - X p] and what doesn't

* (Y Pz-Zpy)(Z Px-XPz) =Y PzZ Px- Y Pz X Pz - Z Py ZPx +HZ Py X Pz

* (ZPx-X Py Pz-2ZPy) =|ZPxY Pz|-X PzY Pz - Z PxZ Py +|X Pz Z Py
* =-px Y[z, pz] + X Py [z, pz] = 1N (X py -y px) =ih Lz

- More generally, we can write [Li, Lj] = ih €k Lk

- States cannot be eigenvectors of more than one L,



Total Angular Momentum:

- Define the operator L2 = Ly + L2 + L2
. (Aside: [AB, C] = A[B,C] +[A,C]B)
« Then the commutator [ L2, Lx] =0
» [Lx%, Lx] =0
- [LA Ll =Ly [Ly, Ld + [Ly, L] Ly =-ih(Ly L+ L Ly)
e (L2, L] = Lo [y, L + [Ls, L] Lz = iR(Lz Ly + Ly L)

e States can simultaneously be eigenvectors of total angular momentum and
one component of angular momentum

e Conventionally, this direction is taken as z:
1,m) —  L2|l,m) = R+ 1|, m)
—  L,|l,m) = hm|l,m)

* For orbital angular momentum, | must be a (positive) integer

* For spin angular momentum, | can be half or whole integer



The “Ladder” Operator:

« Consider the operator L. = Lx + iLy, in particular its commutator
* [Lz, Li] = [l Lx + ILy] = [Lz, Lx] + 1[Lz, Lyl = i1h Ly + h Lx = h L
» Now consider: L,(L4|l,m))
« Using the commutation relation we just derived
LzL—I-|l7m> (L—I—Lz + ﬁL—I—)|l7m>
A(m + 1)Ly |l,m)

» L1 |l,m) is an eigenstate of L, with eigenvalue h(m+1)

+ Likewise, with L. = Lx- iL,, we can show L_|l, m) is an eigenstate of L, with
eigenvalue h(m-1)

- L, and L- are called “ladder” or “raising and lowering” operators



Normalizing the State

- Consider the inner product of a state with itself: <a|a>
- |{Bla)|* is the probability that a state |} can be found in the state |3)
+ For (possibly) obvious reasons, we want {a|a) = 1
- we then say that the state is normalized

- we have assumed thus far that our angular momentum states |{, m)
are normalized, i.e. (I,m|l,m) =1

* In general, the normalization of a state resulting from an operation can
change: (a|OT0la) # 1

* we need to “renormalize” the state by rescaling it.

 For states produced by the ladder operators, we obtain the normalization by
calculating (I, m|LY Ly |l,m) = (I, m|L_L,|l,m)

* If we consider L-L+ = (Lx - iLy)(Lx + iLy) = L«® +Ly? + i(Lx Ly - Ly Lx)
¢ :Lx2+|_y2+ihi|_z: L2‘L22‘h|_z



Check:

* Is everyone happy with :

1 1< —~ M = z-axis component

|27_1>

2,2T>/v
|=total angular momentum number
« What about:

- two objects, one spin 1/2, the other 1=2.

- First object has s;=1/2, second is |,=-1



Climbing up and down the ladder

- Now inserting the operator back into the equation and recall the fact that the
state is an eigenvalue of L? and L;

(I, m|L? — L7 — hL.|l,m) = (I, m|R*l(l + 1) — m*h* — mAh?|l, m)

 Thus, if we call |l7 m —+ 1> the normalized eigenvector with eigenvalues
I(I+1) and m for L? and L., respectively, then

Li|l,m)=nh/I(l+1)—m(m+1)|[l,m+ 1)

L_|l,m)=n\/I(l+1)—m(m—1)[l,m—1)
* Note:

+ If we act with L. on |I, m = [}, we get zero

- If we act with L. on |{, m = —l>, we get zero
* The “top” and “bottom” of the ladder are at m = + /

- For a given [, m ranges from -/ to / in integer steps.



Adding Angular Momentum:

- We have two objects with angular momentum states and wish to consider the
total angular momentum:

« We have three sets of eigenstates:
» The |, z eigenstates that we are adding together  |l1, mq), |l2, m2)

» The |,z states of the summed state: |J, J>)

 Recall that angular momentum is a (axial) vector quantity:

- How do the two separate states correspond to the combined angular
momentum states?

- The components of L; (i.e. m1, m2) add:
* Jz=m1 + mo
* The combined total angular momentum can have a range:

« J = |l1- I2| to |I1 + I2|: corresponds to initial states anti-parallel or parallel.



Highest Weight Decomposition

- Consider the combination of two spin 1/2 objects: s12=1/2.

+ There are four independent states: |4, £4)|%, =)
* These can add to form states of total angular momentum J = 0 or 1
» There are four independent states (1 for J=0, 3 for J = 1)
» Consider the state |J =1, J, = 1)
+ since there J, = m1 + my, this must correspond to the state |3, 3)|3, )

 What about the other states? We apply the “lowering operator” L- on both
sides of the equation. Note that J = §7 + §9 so J_ = s1_ + so_

- On the “combined side” J_|1,1) = /1 x 2 — 1 x 0/1,0) = v/2|1,0)
- For the “individual” states:

R L RV R




To the bottom of the latter

- Now apply J- and s1. + s2- to |1, 0) and% (12, -2, )+ 12, 22, —2))
to obtain [1, —1)

1 1. .11 1 1.1 1
* How do we obtain the J=0 state |0, 0) ?

* recall that states with different eigenvalues for an operator are orthogonal

e Thus |0,0) must be orthogonal to |1, 0) (i.e. J eigenvalues are different)

* in the component space, it must be orthogonal to
1 (1 _1y\j1 1 1 1\(1 1
7 U2 =2)M3:3) +13: 325, —2))

* The only available orthogonal state with the right quantum numbers is

1 ‘1 1>|1 1> |1 1>‘1 1>
V2 20 277272 272727 2



Determining the orthogonal state:

We concluded that: \1@);%\%,_%” 7 >¥\/%|%’%>|%7_%>

N | —
N | —

and now we want to find |0, 0)

- How do we show two states |A) and | B) are orthogonal?
- We consider (A|B) or (B|A) : this should be 0

1 —1> 1 +1>* 1 1 +1>

- We postulated that %\5, Ly e L £

55 5 %13, %) 13,39 isorthogonal

. 1 —1/1 1 1 11,71 —1 1 —1\|1 1 1 1\vi1 —1

+ So we consider: (3,3 (3, 51— G F1G T ][z 3)e5) +l3 55
. 0 M A ?

- Recalling that: T
1 —1(/1 411 —1\|1 +1\ __ .
(52 13 5 lle 55 5) =1 =0
(Lol iyl iyl -1y g KeyTacts
272 122 2 1120 2 7027 2 1. states with different quantum numbers
1 41171 —1111 —1\1 -1 (eigenvalues) are orthogonal
(35 e 32 )5, 5) =0
1 —1(/1 4101 411 —1 2. Inner product of state with itself = 1 assuming
(33 15511251557 =0 itis normalized




Putting it all together

LY = l33)ls2) @
LO) = a9l + 5l 5l —5) @
1
1,-1) = |3,-1)% -1) 1/2)(1/2
+1/2+1/2 -
|070> — L’lv_l>’lvl> o L|lal>|17_l> +1/2 -1/2
V212> 7 2/125 2 V212027120 732

-1/2 +1/2
« These coefficients are called “Clebsch-Gordan”

coefficients

« Some poor person has worked all the
coefficients so that we don’t have to.

* You just have to know how to read the table

* By convention all entries have an implied
squared root:



Practice with Clebsch-Gordan Coefficients:

+2 -111/15 1/3 3/5
+1 0(8/15 1/6-3/10
2/5 -1/2 1/10

1x1T

2
+1

1/72 1/2
1/72-1/2

1
+1

2 T 0
O 0 O

176 1/2 1/3
0O 0|2/73 0-1/3
1/6-1/2 1/3

-1 -1

« Use the Clebsch-Gordon coefficient to
decompose the states of the two spin 1
systems.

How many states are there?
What are their J values?

Perform the highest weight
decomposition of the J=2 state and
check with the table.

Determine the J=1, J;=1 using
orthogonality and check with the
table.



The Paull Matrices

* Define the matrices:
h h (0 1 h h (0 —i h h (1 0

- At home, you should convince yourself that:
- these matrices satisfy the commutation relations [Si, Sj] = ih €k Sk

* the vectors (é) : (2) are the eigenvectors of S; with the appropriate
eigenvalues

- operators S; and S- have the desired properties.

- all states of this system have the appropriate eigenvalue for a spin 1/2 system
for the operator S2.



The Paull Matrices

 Define the matrices corresponding to our S; operators

h (0 1 K h(0 —i K Bl 0
Sf”‘i"“"‘i(l 0>’Sy_§"y_§<z' 0>’SZ_§"Z_§(O —1>

- and our eigenvectors corresponding to our eigenstates of S, S;.

- (o) W-b-(1)

Dirac notation Pauli matrix notation

A1 0 1 h
Sz|%a%>:g|%7%> 5(0 —1>( >_§( )

1 0 0 h(0
Sz‘%7_%> — _3‘57_%> 5 ( 0 —1 > ( 1 ) :_§< 1 >

N |—




More on

Paull Matrices:

« Symbolic vs. Matrix form

N |—
|

N | =

~~—"
|

St

DN
|

DN




Total Angular Momentum




Summary:

- Symmetries are a fundamental concept in particle physics
* NOther: symmetries < conservation laws

« symmetry operations in physics can often be expressed algebraically as
matrices

- Angular momentum conservation arises from the isotropy/rotational symmetry
- Non-trivial commutation relations between Ly, Ly, Lz
« we can diagonalize only with respect to one
» L2 however, commutes with Lj, so simultaneous eigenstates exist

- Raising/lowering operator allows one to fill out all the states of a given
angular momentum when we add two components of angular momentum

- emply “highest weight decomposition” with the highest L, L, state

 Clebsch-Gordan coefficients: relation between eigenstates of the
combined system vs. eigenstates of the component systems

- Pauli matrices: explicit representation of the 2-state spin 1/2 system



