Lecture 6: Symmetries in Quantum Mechanics

H. A. Tanaka

Outline

- Introduce symmetries and their relevance to physics in general
 - Examine some simple examples
 - Consequences of symmetries for physics
 - groups and matrices
- Study angular momentum as a symmetry group
 - commutation relations
 - simultaneous eigenstates of angular momentum
 - adding angular momentum: highest weight decomposition
 - Clebsch-Gordan coefficients:
 - what are they?
 - how to calculate or find their values.
- Warning: this may be a particularly dense lecture (fundamental QM ideas)
 - You should have seen this before in quantum mechanics

Symmetries

- symmetry: an operation (on something) that leaves it unchanged
 - rotations/reflections: triangles (isosceles, equilateral), square, rectangle
 - translation: (crystal lattice)
 - discrete/continuous: rotations of a square vs. a circle
- Mathematically, symmetries form mathematical objects called groups:
 - closure: 2 symmetry operations make another one (member of the group)
 - identity: doing nothing is a symmetry operation (member of the group)
 - inverse: for each operation, there is another one that undoes it (i.e. operation + inverse is equivalent to the identity)
 - Associativity: $R_1(R_2R_3) = (R_1R_2)R_3$
- Nöther's Theorem:
 - Symmetry in a system corresponds to a conservation law
 - Space and translation symmetry → conservation of ?
 - Rotational symmetry → conservation of ?

Matrices

- Symmetry operations can often be expressed ("represented") by matrices
 - The composition of two operations translates into matrix multiplication
 - How do group properties (closure, identity, inverse, associativity) translate?
- Some important groups of matrices in physics:
 - U(N): N x N unitary matrices, U⁻¹=U^{T*}
 - SU(N): U(N) matrices with determinant 1
 - O(N): N x N orthogonal matrices: real matrices with O⁻¹=O^T
 - SO(N): O(N) matrices with determinant 1
- The rotation group and angular momentum are fundamentally associated with the group SU(2) (~SO(3)) and its representations.
 - "2x2 unitary matrices with determinant 1"
 - Groups have larger dimension representations (i.e. NxN matrices) with the same structure. In SU(2), these correspond to systems with different total angular momentum.

Commutation Relations:

- Matrix multiplication is order-dependent!
 - Generally: A B ≠ B A
 - Call AB -BA the commutator of A, B

•
$$[A, B] = AB - BA$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

- Quantum Mechanics:
 - Observable quantities correspond to operators (matrices), eigenvalues
 - A state with a well-defined value for an observable is an eigenvector of the corresponding operator. The value is the eigenvalue for the eigenvector.
 - Eigenvectors with different eigenvalues are orthogonal
 - For two observables, if the order of the measurement matters, then a state cannot simultaneously be an eigenvector of both operators
- Example:
 - $[x, p_x] = iv\hbar : x, p_x$ cannot simultaneously have well-defined values
 - More generally, we can say $[x_i, p_j] = \delta_{ij}i\hbar$

Playing around with the Commutator

· At home, you should convince yourself of the following:

•
$$[A,B] = -[B,A]$$

•
$$[A, B+C] = [A,B] + [A,C]$$

•
$$[A+B, C] = [A,C] + [B,C]$$

•
$$[A,A] = 0$$

•
$$[A,BC] = [A,B]C + B[A,C]$$

•
$$[AB, C] = A [B,C] + [A, C] B$$

•
$$[A, A^2] = [A, A^n] = 0$$

Commutation Relations for Angular Momentum

 We can express angular momentum in terms of its classical counterparts and introduce a new notation:

$$\vec{L} = \vec{r} \times \vec{p} \to L_i = \epsilon_{ijk} x_j p_k$$

where the "completely antisymmetric tensor" ϵ_{ijk} is defined by:

- $\varepsilon_{ijk} = 1$ if i, j, k are an even permutation of 1, 2, 3 = (x,y,z)
- $\varepsilon_{ijk} = -1$ if i, j, k are odd permutation of (x, y, z)
- $\varepsilon_{ijk} = 0$ otherwise (if any of i, j, k are the same)
- Examine $[L_x, L_y] = [y p_z z p_y, z p_x x p_z]$

pay attention to what commutes and what doesn't

•
$$(y p_z - z p_y)(z p_x - x p_z) = y p_z z p_x - y p_z x p_z - z p_y z p_x + z p_y x p_z$$

•
$$(z p_x - x p_z)(y p_z - z p_y) = z p_x y p_z - x p_z y p_z - z p_x z p_y + x p_z z p_y$$

• =
$$-p_x y [z, p_z] + x p_y [z, p_z] = i\hbar (x p_y - y p_x) = i\hbar L_z$$

- More generally, we can write $[L_i, L_j] = i\hbar \epsilon_{ijk} L_k$
- States cannot be eigenvectors of more than one Li

Total Angular Momentum:

- Define the operator $L^2 = L_x^2 + L_y^2 + L_z^2$
 - (Aside: [AB, C] = A [B,C] + [A,C] B)
- Then the commutator $[L^2, L_x] = 0$
 - $[L_x^2, L_x] = 0$
 - $[L_y^2, L_x] = L_y [L_y, L_x] + [L_y, L_x] L_y = -i\hbar(L_y L_z + L_z L_y)$
 - $[L_z^2, L_x] = L_z [L_z, L_x] + [L_z, L_x] L_z = i\hbar(L_z L_y + L_y L_z)$
- States can simultaneously be eigenvectors of total angular momentum and one component of angular momentum
- Conventionally, this direction is taken as z:

$$|l,m\rangle \rightarrow L^2|l,m\rangle = \hbar^2 l(l+1)|l,m\rangle$$

 $\rightarrow L_z|l,m\rangle = \hbar m|l,m\rangle$

- For orbital angular momentum, I must be a (positive) integer
- For spin angular momentum, I can be half or whole integer

The "Ladder" Operator:

- Consider the operator $L_+ = L_x + iL_y$, in particular its commutator
 - $[L_z, L_+] = [L_z, L_x + iL_y] = [L_z, L_x] + i[L_z, L_y] = i \hbar L_y + \hbar L_x = \hbar L_+$
- Now consider: $L_z(L_+|l,m\rangle)$
 - Using the commutation relation we just derived

$$L_z L_+ |l, m\rangle = (L_+ L_z + \hbar L_+)|l, m\rangle$$
$$= \hbar (m+1)L_+|l, m\rangle$$

- $L_{+}|l,m
 angle$ is an eigenstate of Lz with eigenvalue \hbar (m+1)
- Likewise, with L₋ = L_x iL_y, we can show $L_-|l,m\rangle$ is an eigenstate of L_z with eigenvalue \hbar (m-1)
- L+ and L- are called "ladder" or "raising and lowering" operators

Normalizing the State

- Consider the inner product of a state with itself: $\langle \alpha | \alpha \rangle$
 - $|\langle \beta | \alpha \rangle|^2$ is the probability that a state $|\alpha \rangle$ can be found in the state $|\beta \rangle$
 - For (possibly) obvious reasons, we want $\langle \alpha | \alpha \rangle = 1$
 - we then say that the state is normalized
 - we have assumed thus far that our angular momentum states $|l,m\rangle$ are normalized, i.e. $\langle l,m|l,m\rangle=1$
 - In general, the normalization of a state resulting from an operation can change: $\langle \alpha | O^\dagger O | \alpha \rangle \neq 1$
 - we need to "renormalize" the state by rescaling it.
- For states produced by the ladder operators, we obtain the normalization by calculating $\langle l,m|L_+^\dagger L_+|l,m\rangle=\langle l,m|L_-L_+|l,m\rangle$
- If we consider $L_-L_+ = (L_x iL_y)(L_x + iL_y) = L_x^2 + L_y^2 + i(L_x L_y L_y L_x)$
 - = $L_x^2 + L_y^2 + i h i L_z = L^2 L_z^2 \hbar L_z$

Check:

Is everyone happy with:

/=total angular momentum number

• What about:

$$|\frac{1}{2},\frac{1}{2}\rangle|2,-1\rangle$$

- two objects, one spin 1/2, the other I=2.
- First object has $s_z=1/2$, second is $l_z=-1$

Climbing up and down the ladder

 Now inserting the operator back into the equation and recall the fact that the state is an eigenvalue of L² and L_z

$$\langle l, m|L^2 - L_z^2 - \hbar L_z|l, m\rangle = \langle l, m|\hbar^2 l(l+1) - m^2 \hbar^2 - m\hbar^2|l, m\rangle$$

• Thus, if we call $|l,m+1\rangle$ the normalized eigenvector with eigenvalues l(l+1) and m for L² and Lz, respectively, then

$$L_{+}|l,m\rangle = \hbar\sqrt{l(l+1) - m(m+1)}|l,m+1\rangle$$

$$L_{-}|l,m\rangle = \hbar\sqrt{l(l+1) - m(m-1)}|l,m-1\rangle$$

- Note:
 - If we act with L+ on |l,m=l
 angle, we get zero
 - If we act with L on $|l,m=-l\rangle$, we get zero
- The "top" and "bottom" of the ladder are at $m = \pm l$
 - For a given l, m ranges from -l to l in integer steps.

Adding Angular Momentum:

- We have two objects with angular momentum states and wish to consider the total angular momentum:
 - We have three sets of eigenstates:
 - The I, z eigenstates that we are adding together $|l_1,m_1
 angle,|l_2,m_2
 angle$
 - The I,z states of the summed state: $|J,J_z\rangle$
 - Recall that angular momentum is a (axial) vector quantity:
 - How do the two separate states correspond to the combined angular momentum states?
- The components of L_z (i.e. m₁, m₂) add:
 - $J_z = m_1 + m_2$
- The combined total angular momentum can have a range:
 - J = $|l_1 l_2|$ to $|l_1 + l_2|$: corresponds to initial states anti-parallel or parallel.

Highest Weight Decomposition

- Consider the combination of two spin 1/2 objects: $s_{1,2}=1/2$.
 - There are four independent states: $|\frac{1}{2}, \pm \frac{1}{2}\rangle |\frac{1}{2}, \pm \frac{1}{2}\rangle$
 - These can add to form states of total angular momentum J = 0 or 1
 - There are four independent states (1 for J=0, 3 for J=1)
- Consider the state $|J=1,J_z=1\rangle$
 - since there $J_z = m_1 + m_2$, this must correspond to the state $|\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, \frac{1}{2}\rangle$
 - What about the other states? We apply the "lowering operator" L₋ on both sides of the equation. Note that $\vec{J}=\vec{s}_1+\vec{s}_2$ so $J_-=s_{1-}+s_{2-}$
- On the "combined side": $J_-|1,1\rangle=\sqrt{1\times 2-1\times 0}|1,0\rangle=\sqrt{2}|1,0\rangle$
- For the "individual" states:

$$(s_{1-} + s_{2-})|\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, \frac{1}{2}\rangle = \sqrt{\frac{1}{2}\frac{3}{2} - \frac{1}{2}\frac{-1}{2}}|\frac{1}{2}, \frac{-1}{2}\rangle |\frac{1}{2}, \frac{1}{2}\rangle + \sqrt{\frac{1}{2}\frac{3}{2} - \frac{1}{2}\frac{-1}{2}}|\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, \frac{-1}{2}\rangle = |\frac{1}{2}, \frac{-1}{2}\rangle |\frac{1}{2}, \frac{1}{2}\rangle + |\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, \frac{-1}{2}\rangle = |\frac{1}{2}, \frac{-1}{2}\rangle |\frac{1}{2}, \frac{1}{2}\rangle + |\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, \frac{-1}{2}\rangle$$

$$|1,0\rangle = \frac{1}{\sqrt{2}} \left(|\frac{1}{2}, -\frac{1}{2}\rangle |\frac{1}{2}\frac{1}{2}\rangle + |\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, -\frac{1}{2}\rangle \right)$$

To the bottom of the latter

• Now apply J₋ and s₁₋ + s₂₋ to $|1,0\rangle$ and $\frac{1}{\sqrt{2}}\left(|\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle+|\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle\right)$ to obtain $|1,-1\rangle$

Note:
$$s_{1-}|\frac{1}{2}, -\frac{1}{2}\rangle|\frac{1}{2}, \frac{1}{2}\rangle = 0$$
 $s_{2-}|\frac{1}{2}, \frac{1}{2}\rangle|\frac{1}{2}, -\frac{1}{2}\rangle = 0$

- How do we obtain the J=0 state $|0,0\rangle$?
 - recall that states with different eigenvalues for an operator are orthogonal
 - Thus $|0,0\rangle$ must be orthogonal to $|1,0\rangle$ (i.e. J eigenvalues are different)
 - in the component space, it must be orthogonal to

$$\frac{1}{\sqrt{2}} \left(|\frac{1}{2}, -\frac{1}{2}\rangle |\frac{1}{2}, \frac{1}{2}\rangle + |\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, -\frac{1}{2}\rangle \right)$$

The only available orthogonal state with the right quantum numbers is

$$\frac{1}{\sqrt{2}} \left(|\frac{1}{2}, -\frac{1}{2}\rangle |\frac{1}{2}, \frac{1}{2}\rangle - |\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, -\frac{1}{2}\rangle \right)$$

Determining the orthogonal state:

We concluded that: $|1,0\rangle=\frac{1}{\sqrt{2}}|\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle+\frac{1}{\sqrt{2}}|\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle$ and now we want to find $|0,0\rangle$

- How do we show two states $|A\rangle$ and $|B\rangle$ are orthogonal?
 - We consider $\langle A|B\rangle$ or $\langle B|A\rangle$: this should be 0
- We postulated that $\frac{1}{\sqrt{2}}|\frac{1}{2},\frac{-1}{2}\rangle$ $|\frac{1}{2},\frac{+1}{2}\rangle$ $\frac{1}{\sqrt{2}}|\frac{1}{2},\frac{+1}{2}\rangle$ $|\frac{1}{2},\frac{-1}{2}\rangle$ is orthogonal
- So we consider: $\left[\langle \frac{1}{2}, \frac{-1}{2} | \langle \frac{1}{2}, \frac{+1}{2} | \langle \frac{1}{2}, \frac{+1}{2} | \langle \frac{1}{2}, \frac{-1}{2} | \right] \left[|\frac{1}{2}, \frac{-1}{2} \rangle |\frac{1}{2}, \frac{+1}{2} \rangle + |\frac{1}{2}, \frac{+1}{2} \rangle |\frac{1}{2}, \frac{-1}{2} \rangle \right]$
- Recalling that:

$$\langle \frac{1}{2}, \frac{-1}{2} | \langle \frac{1}{2}, \frac{+1}{2} | | \frac{1}{2}, \frac{-1}{2} \rangle | \frac{1}{2}, \frac{+1}{2} \rangle = 1$$

$$\langle \frac{1}{2}, \frac{+1}{2} | \langle \frac{1}{2}, \frac{-1}{2} | | \frac{1}{2}, \frac{+1}{2} \rangle | \frac{1}{2}, \frac{-1}{2} \rangle = 1$$

$$\langle \frac{1}{2}, \frac{+1}{2} | \langle \frac{1}{2}, \frac{-1}{2} | | \frac{1}{2}, \frac{-1}{2} \rangle | \frac{1}{2}, \frac{+1}{2} \rangle = 0$$

$$\langle \frac{1}{2}, \frac{-1}{2} | \langle \frac{1}{2}, \frac{+1}{2} | | \frac{1}{2}, \frac{+1}{2} \rangle | \frac{1}{2}, \frac{-1}{2} \rangle = 0$$

Key facts

- 1. states with different quantum numbers (eigenvalues) are orthogonal
- 2. Inner product of state with itself = 1 assuming it is normalized

Putting it all together

$$|1,1\rangle \qquad = \quad |\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle \qquad \qquad \blacksquare$$

$$|1,0\rangle$$
 = $\frac{1}{\sqrt{2}}|\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle+\frac{1}{\sqrt{2}}|\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle$

$$|1,-1\rangle = |\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle$$

$$|0,0\rangle$$
 = $\frac{1}{\sqrt{2}}|\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle-\frac{1}{\sqrt{2}}|\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle$

- These coefficients are called "Clebsch-Gordan" coefficients
- Some poor person has worked all the coefficients so that we don't have to.
- You just have to know how to read the table
 - By convention all entries have an implied squared root:

Practice with Clebsch-Gordan Coefficients:

- Use the Clebsch-Gordon coefficient to decompose the states of the two spin 1 systems.
 - How many states are there?
 - What are their J values?
 - Perform the highest weight decomposition of the J=2 state and check with the table.
 - Determine the J=1, $J_z=1$ using orthogonality and check with the table.

The Pauli Matrices

Define the matrices:

$$S_x = \frac{\hbar}{2}\sigma_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, S_y = \frac{\hbar}{2}\sigma_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, S_z = \frac{\hbar}{2}\sigma_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- At home, you should convince yourself that:
 - these matrices satisfy the commutation relations $[S_i, S_j] = i\hbar \epsilon_{ijk} S_k$
 - the vectors $\binom{1}{0}$, $\binom{0}{1}$ are the eigenvectors of S_z with the appropriate eigenvalues
 - operators S₊ and S₋ have the desired properties.
- all states of this system have the appropriate eigenvalue for a spin 1/2 system for the operator S².

The Pauli Matrices

Define the matrices corresponding to our S_i operators

$$S_x = \frac{\hbar}{2}\sigma_x = \frac{\hbar}{2}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, S_y = \frac{\hbar}{2}\sigma_y = \frac{\hbar}{2}\begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}, S_z = \frac{\hbar}{2}\sigma_z = \frac{\hbar}{2}\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$

and our eigenvectors corresponding to our eigenstates of S, Sz.

$$|\frac{1}{2},\frac{1}{2}\rangle \rightarrow \begin{pmatrix} 1\\0 \end{pmatrix} \qquad |\frac{1}{2},-\frac{1}{2}\rangle \rightarrow \begin{pmatrix} 0\\1 \end{pmatrix}$$

Dirac notation

$$S_z|\frac{1}{2},\frac{1}{2}\rangle = \frac{\hbar}{2}|\frac{1}{2},\frac{1}{2}\rangle$$

$$S_z|\frac{1}{2}, -\frac{1}{2}\rangle = -\frac{\hbar}{2}|\frac{1}{2}, -\frac{1}{2}\rangle$$

Pauli matrix notation

$$\frac{\hbar}{2} \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) = \frac{\hbar}{2} \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$$

$$S_z|\frac{1}{2}, -\frac{1}{2}\rangle = -\frac{\hbar}{2}|\frac{1}{2}, -\frac{1}{2}\rangle$$

$$\frac{\hbar}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\begin{pmatrix} 0 \\ 1 \end{pmatrix} = -\frac{\hbar}{2}\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

More on Pauli Matrices:

Symbolic vs. Matrix form

$$S_{+}|\frac{1}{2},\frac{1}{2}\rangle = 0$$

$$S_{+}|\frac{1}{2}, -\frac{1}{2}\rangle = \hbar\sqrt{\frac{1}{2}\frac{3}{2} - \frac{1}{2}\frac{-1}{2}}|\frac{1}{2}, \frac{1}{2}\rangle = \hbar|\frac{1}{2}, \frac{1}{2}\rangle \qquad \frac{\hbar}{2}\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \hbar\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$S_{-}|\frac{1}{2},\frac{1}{2}\rangle = \hbar\sqrt{\frac{1}{2}\frac{3}{2} - \frac{-1}{2}\frac{1}{2}}|\frac{1}{2}, -\frac{1}{2}\rangle = \hbar|\frac{1}{2}, -\frac{1}{2}\rangle \qquad \frac{\hbar}{2}\begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \hbar\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$S_-|\frac{1}{2}, -\frac{1}{2}\rangle = 0$$

$$S_{+} = S_{x} + iS_{y} = \frac{\hbar}{2} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$

$$\frac{\hbar}{2} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0$$

$$\frac{\hbar}{2} \left(\begin{array}{cc} 0 & 2 \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) = 0$$

$$\frac{\hbar}{2} \left(\begin{array}{cc} 0 & 2 \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 1 \end{array} \right) = \hbar \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$$

$$S_{-} = S_x - iS_y = \frac{\hbar}{2} \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$$

$$\frac{\hbar}{2} \left(\begin{array}{cc} 0 & 0 \\ 2 & 0 \end{array} \right) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) = \hbar \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$$

$$\frac{\hbar}{2} \left(\begin{array}{cc} 0 & 0 \\ 2 & 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 1 \end{array} \right) = 0$$

Total Angular Momentum

$$S^{2}|\frac{1}{2}, \frac{1}{2}\rangle = l(l+1)\hbar^{2}|\frac{1}{2}, \frac{1}{2}\rangle = \frac{3}{4}\hbar^{2}|\frac{1}{2}, \frac{1}{2}\rangle$$

$$S^{2}|\frac{1}{2}, -\frac{1}{2}\rangle = l(l+1)\hbar^{2}|\frac{1}{2}, -\frac{1}{2}\rangle = \frac{3}{4}\hbar^{2}|\frac{1}{2}, -\frac{1}{2}\rangle$$

$$S^{2} = S_{x}^{2} + S_{y}^{2} + S_{z}^{2} = \frac{\hbar^{2}}{4} \times \left[\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}^{2} + \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}^{2} + \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}^{2} \right]$$

$$\frac{3\hbar^{2}}{4} \times \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$

$$\frac{3\hbar^{2}}{4} \times \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} = \frac{3\hbar^{2}}{4} \times \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

$$\frac{3\hbar^{2}}{4} \times \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} = \frac{3\hbar^{2}}{4} \times \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

Summary:

- Symmetries are a fundamental concept in particle physics

 - symmetry operations in physics can often be expressed algebraically as matrices
- Angular momentum conservation arises from the isotropy/rotational symmetry
 - Non-trivial commutation relations between Lx, Ly, Lz
 - we can diagonalize only with respect to one
 - L² however, commutes with L_i, so simultaneous eigenstates exist
 - Raising/lowering operator allows one to fill out all the states of a given angular momentum when we add two components of angular momentum
 - emply "highest weight decomposition" with the highest L, Lz state
 - Clebsch-Gordan coefficients: relation between eigenstates of the combined system vs. eigenstates of the component systems
 - Pauli matrices: explicit representation of the 2-state spin 1/2 system