Relativistic Kinematics

H. A. Tanaka



Announcements

- | will be out of town starting Wednesday afternoon

- Thursday lecture will be given by Prof. W. Trischuk

» | will have to cancel my office hours this week

* please do not hesitate to email me with any questions, etc.



Overview

Preview of what kind of problems we will deal with
« decay

e scatter

Review of our tools
« 4-momentum conservation, invariants

« reference frames

Notation

Relation between kinematic quantities

A few examples



Notation

* Note:
- for the most part, we deal with four-momentum
- they may or may not be labeled by their Lorentz index
* “momentum p” implicitly means four-momentum p
« 3-momentum will be explicitly labeled
- either by bold font, arrows, Roman indices
* this notation carries over to the vector algebra

- when there is a dot product, if the quantities are not bold/arrowed, it
refers to a Lorentz-invariant product

- otherwise, it is a three-vector product.



Relations:

« Some basic kinematic relations:

- Energy, mass, momentum: from our definition
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2-body decay at rest (l)

* Perhaps the easiest kinematic situation
+ e.9. K'(1)—-K*(2) + n(3), calculate outgoing energies
» calculate the energy of particle 2
* note that we don’t really know anything except the masses

- Approach one: by conservation of energy and momentum (separately):
E1:E2—|—E3:m102 P1 = P2 + P3

2
Ey + \/p22(32 + mzct = myc
m%c4 + E% — 2Fomqc® = p2202 + m§c4
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2-body decay (lI)

« Approach 2: with 4-momentum algebra
 From conservation:
_ 2 2 2 2
P1 =p2 +P3 — p7 = (p2 +p3)° = p5 + p3 + 2p2 - p3
» translate these into masses:

m%c2 — m%cQ — m%c2
9 — P2 - P3

 Reuse conservation:

P2 - D3 =p2'(p1 —p2) — D1 'p2—m302

 explicitly evaluate p1:p2 remembering that p1 is at rest

p1-pe = E1Fy/c* —p1-p2 = mi1Es

m%c2 + m%c2 — m%c2
by =

2m1



Observations

- Start by assigning 4-momenta notation to the incoming and outgoing
particles and setting up the 4-momentum conservation equation

* In four momentum equations:

 squaring usually terms many of the terms into masses, which are easy to
deal with (especially if they are zero)

» it also turns it into a scalar equation

- In the CM frame and the lab frame, there are quantities that are zero
(momentum of initial particle in CM frame, etc.)

- Use these in the four-vector expression (like a dot product) to zero out
parts of the expression

2
p1-p2 = E1Ey/c” —p1-p2 = mi B
+ Keep an eye out for opportunities to combine E?, p2, m?

 Once you have E or p in you can easily translate between them (and v)



Laboratory scattering

« Consider the process A + B — C where B is at rest.

- What energy of A required to produce C?

« Assign labels (trivial: A = pa, b = ps, C — pc)

« Conservation of 4-momentum:
PA +PB = PcC
- Square the equation:

(pa + pB)2 = p%

2

mic® +mpc® + 2(pa - pB)

 Now in the lab frame:
pa=(Fa/c,pa)

pa-pB = Eamp
PB — (cha O)

pA 4+ % +2(pa - pB) = P&
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The other way:

« Consider the process A(1) + B(2) — C(3) where B is at rest.
- What energy of A required?
- Energy/momentum conservation:
Eir+ Ep = FE¢ Earlc+mpe= FEc/c
Pa +PB = PcC Pa = Pc

Ei+mpc? = c\/pj%l + m2,c?

« sguare both sides

2 2 4 2 2 2 2 A4
By +mpe” +2Eampe” = pic” +mée

e ....andsoon



Application:

« What minimum energy is required for the reaction:
pTrp—pT+ptp+p
- with one of the initial protons at rest to proceed?

* in the lab frame, it is complicated since the outgoing products must be in
motion to conserve momentum

- in the CM frame, however, the minimum energy configuration is where the
outgoing products are at rest.

- (kinematically equivalent a single particle of mass 4my)

mic? — mic® — mic?
by =

2m2
* set m3 =4mp, my,m2 = mp

° E1 = 7mpC2



Looking back:

» “classic” vs. “relativistic” kinematics
- recall that in relativity, mass is a form of energy

- it can be interconverted with other forms (kinetic, etc.) as long as
momentum/energy is conserved overall. It is not separately conserved

* in classical kinematics, mass is conserved, along with energy and
momentum.

- In our simple examples, the use of four momentum algebra (perhaps) reduced
the complexity of expressions, though the number of steps was ~same.

 In more complicated examples, you will find it beneficial to use all the tools
that we have (invariants, reference frames, etc.)



Compton Scattering:

- Consider the process y + e — y +e where the electron is initially at rest.
- If the y scatters by an angle 0, what is it’s outgoing energy?
 Assign labels:

* p1 = incoming photon, p2 = initial electron
* p3 = outgoing photon, ps4 = outgoing electron

« Conservation of 4-momentum:

P1 + P2 = P3 + P4 P1 + P2 — P3 = P4
« Square the equation:
(p1 + p2 — p3)° = pj pt +p5+p3+2(p1-p2 —Dp1-D3 — p2-P3) = D]

mZc® + 2(p1 - p2 — p1 - p3 — P2 - p3) = m2c
 Now in the lab frame:
P1 = (El/Capl) p1-p2 = Eime
p2 = (Mmec,0) p1-p3 = E1E3/c* —p1-p3 = E1E3(1 — cosf)/c?
p3 = (E3/C, P3) p2 - p3 = E3me



