Relativistic Kinematics

H. A. Tanaka

Announcements

- I will be out of town starting Wednesday afternoon
- Thursday lecture will be given by Prof. W. Trischuk
- I will have to cancel my office hours this week
- please do not hesitate to email me with any questions, etc.

Overview

- Preview of what kind of problems we will deal with
- decay
- scatter
- Review of our tools
- 4-momentum conservation, invariants
- reference frames
- Notation
- Relation between kinematic quantities
- A few examples

Notation

- Note:
- for the most part, we deal with four-momentum
- they may or may not be labeled by their Lorentz index
- "momentum p" implicitly means four-momentum p
- 3-momentum will be explicitly labeled
- either by bold font, arrows, Roman indices
- this notation carries over to the vector algebra
- when there is a dot product, if the quantities are not bold/arrowed, it refers to a Lorentz-invariant product
- otherwise, it is a three-vector product.

Relations:

- Some basic kinematic relations:
- Energy, mass, momentum: from our definition

$$
\begin{aligned}
& p^{\mu}=(E / c, \vec{p})=m \gamma(c, \vec{v}) \quad E=\gamma m c^{2} \quad \vec{p}=\gamma m \vec{v} \\
& E^{2}-\mathbf{p}^{2} c^{2}=\gamma^{2} m^{2}\left(c^{4}-\mathbf{v}^{2} c^{2}\right)=\frac{m^{2} c^{4}\left(1-\mathbf{v}^{2} / c^{2}\right)}{1-\mathbf{v}^{2} / c^{2}}=m^{2} c^{4} \\
& p^{2}=(E / c)^{2}-\mathbf{p}^{2}=m^{2} c^{2}
\end{aligned}
$$

- energy/momentum and velocity

$$
\begin{aligned}
& \vec{p}=\gamma m \vec{v} \quad E=\gamma m c^{2} \\
& \frac{|\mathbf{p} c|}{E}=\frac{\gamma m \mathbf{v} c}{\gamma m c^{2}}=\frac{v}{c}=\beta
\end{aligned}
$$

2-body decay at rest (I)

- Perhaps the easiest kinematic situation
- e.g. $\mathrm{K}^{* 0}(1) \rightarrow \mathrm{K}^{+}(2)+\pi^{-}(3)$, calculate outgoing energies
- calculate the energy of particle 2
- note that we don't really know anything except the masses
- Approach one: by conservation of energy and momentum (separately):

$$
\begin{aligned}
& E_{1}=E_{2}+E_{3}=m_{1} c^{2} \quad \mathbf{p}_{\mathbf{1}}=\mathbf{p}_{\mathbf{2}}+\mathbf{p}_{\mathbf{3}} \\
& E_{2}+\sqrt{\mathbf{p}_{\mathbf{2}}^{2} c^{2}+m_{3}^{2} c^{4}}=m_{1} c^{2} \\
& m_{1}^{2} c^{4}+E_{2}^{2}-2 E_{2} m_{1} c^{2}=\mathbf{p}_{\mathbf{2}}^{2} c^{2}+m_{3}^{2} c^{4} \\
& m_{1}^{2} c^{4}+m_{2} c^{4}-2 E_{2} m_{1} c^{2}=m_{3}^{2} c^{4} \\
& \quad E_{2}=\frac{m_{1}^{2} c^{2}+m_{2} c^{2}-m_{3}^{2} c^{2}}{2 m_{1}}
\end{aligned}
$$

2-body decay (II)

- Approach 2: with 4-momentum algebra
- From conservation:

$$
p_{1}=p_{2}+p_{3} \longrightarrow p_{1}^{2}=\left(p_{2}+p_{3}\right)^{2}=p_{2}^{2}+p_{3}^{2}+2 p_{2} \cdot p_{3}
$$

- translate these into masses:

$$
\frac{m_{1}^{2} c^{2}-m_{2}^{2} c^{2}-m_{3}^{2} c^{2}}{2}=p_{2} \cdot p_{3}
$$

- Reuse conservation:

$$
p_{2} \cdot p_{3}=p_{2} \cdot\left(p_{1}-p_{2}\right)=p_{1} \cdot p_{2}-m_{2}^{2} c^{2}
$$

- explicitly evaluate $p_{1} \cdot p_{2}$ remembering that p_{1} is at rest

$$
\begin{aligned}
& p_{1} \cdot p_{2}=E_{1} E_{2} / c^{2}-\mathbf{p}_{\mathbf{1}} \cdot \mathbf{p}_{\mathbf{2}}=m_{1} E_{2} \\
& E_{2}=\frac{m_{1}^{2} c^{2}+m_{2}^{2} c^{2}-m_{3}^{2} c^{2}}{2 m_{1}}
\end{aligned}
$$

Observations

- Start by assigning 4-momenta notation to the incoming and outgoing particles and setting up the 4-momentum conservation equation
- In four momentum equations:
- squaring usually terms many of the terms into masses, which are easy to deal with (especially if they are zero)
- it also turns it into a scalar equation
- In the CM frame and the lab frame, there are quantities that are zero (momentum of initial particle in CM frame, etc.)
- Use these in the four-vector expression (like a dot product) to zero out parts of the expression

$$
p_{1} \cdot p_{2}=E_{1} E_{2} / c^{2}-\mathbf{p}_{\mathbf{1}} \cdot \mathbf{p}_{\mathbf{2}}=m_{1} E_{2}
$$

- Keep an eye out for opportunities to combine $\mathrm{E}^{2}, \mathbf{p}^{2}, \mathrm{~m}^{2}$
- Once you have E or \mathbf{p} in you can easily translate between them (and v)

Laboratory scattering

- Consider the process $A+B \rightarrow C$ where B is at rest.
- What energy of A required to produce C ?
- Assign labels (trivial: $\left.A \rightarrow p_{A}, b \rightarrow p_{B}, C \rightarrow p_{C}\right)$
- Conservation of 4-momentum:

$$
p_{A}+p_{B}=p_{C}
$$

- Square the equation:

$$
\begin{aligned}
\left(p_{A}+p_{B}\right)^{2}=p_{C}^{2} \quad & p_{A}^{2}+p_{B}^{2}+2\left(p_{A} \cdot p_{B}\right)=p_{C}^{2} \\
& m_{A}^{2} c^{2}+m_{B}^{2} c^{2}+2\left(p_{A} \cdot p_{B}\right)=m_{C}^{2} c^{2}
\end{aligned}
$$

- Now in the lab frame:

$$
\begin{aligned}
& p_{A}=\left(E_{A} / c, \mathbf{p}_{A}\right) \\
& p_{B}=\left(m_{B} c, \mathbf{0}\right)
\end{aligned} \quad p_{A} \cdot p_{B}=E_{A} m_{B}
$$

$$
E_{A}=\frac{m_{C}^{2} c^{2}-m_{A}^{2} c^{2}-m_{B}^{2} c^{2}}{2 m_{B}}
$$

The other way:

- Consider the process $A(1)+B(2) \rightarrow C(3)$ where B is at rest.
- What energy of A required?
- Energy/momentum conservation:

$$
\begin{array}{ll}
E_{A}+E_{B}=E_{C} & E_{A} / c+m_{B} c=E_{C} / c \\
\mathbf{p}_{A}+\mathbf{p}_{B}=\mathbf{p}_{C} & \mathbf{p}_{A}=\mathbf{p}_{C} \\
E_{A}+m_{B} c^{2}=c \sqrt{\mathbf{p}_{A}^{2}+m_{C}^{2} c^{2}}
\end{array}
$$

- square both sides

$$
E_{A}^{2}+m_{B}^{2} c^{4}+2 E_{A} m_{B} c^{2}=\mathbf{p}_{A}^{2} c^{2}+m_{C}^{2} c^{4}
$$

- and so on

Application:

- What minimum energy is required for the reaction:

$$
p+p \rightarrow p+p+p+\bar{p}
$$

- with one of the initial protons at rest to proceed?
- in the lab frame, it is complicated since the outgoing products must be in motion to conserve momentum
- in the CM frame, however, the minimum energy configuration is where the outgoing products are at rest.
- (kinematically equivalent a single particle of mass $4 \mathrm{~m}_{\mathrm{p}}$)

$$
E_{1}=\frac{m_{3}^{2} c^{2}-m_{1}^{2} c^{2}-m_{2}^{2} c^{2}}{2 m_{2}}
$$

- set $\mathrm{m}_{3}=4 \mathrm{~m}_{\mathrm{p}}, \mathrm{m}_{1}, \mathrm{~m}_{2}=\mathrm{m}_{\mathrm{p}}$
- $\mathrm{E}_{1}=7 \mathrm{mp}_{\mathrm{p}}{ }^{2}$

Looking back:

- "classic" vs. "relativistic" kinematics
- recall that in relativity, mass is a form of energy
- it can be interconverted with other forms (kinetic, etc.) as long as momentum/energy is conserved overall. It is not separately conserved
- in classical kinematics, mass is conserved, along with energy and momentum.
- In our simple examples, the use of four momentum algebra (perhaps) reduced the complexity of expressions, though the number of steps was ~same.
- In more complicated examples, you will find it beneficial to use all the tools that we have (invariants, reference frames, etc.)

Compton Scattering:

- Consider the process $\gamma+\mathrm{e} \rightarrow \gamma+\mathrm{e}$ where the electron is initially at rest.
- If the γ scatters by an angle θ, what is it's outgoing energy?
- Assign labels:
- $\mathrm{p}_{1}=$ incoming photon, $\mathrm{p}_{2}=$ initial electron
- $p_{3}=$ outgoing photon, $p_{4}=$ outgoing electron
- Conservation of 4-momentum:

$$
p_{1}+p_{2}=p_{3}+p_{4} \quad p_{1}+p_{2}-p_{3}=p_{4}
$$

- Square the equation:

$$
\begin{aligned}
\left(p_{1}+p_{2}-p_{3}\right)^{2}=p_{4}^{2} & p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+2\left(p_{1} \cdot p_{2}-p_{1} \cdot p_{3}-p_{2} \cdot p_{3}\right)=p_{4}^{2} \\
& m_{e}^{2} c^{2}+2\left(p_{1} \cdot p_{2}-p_{1} \cdot p_{3}-p_{2} \cdot p_{3}\right)=m_{e}^{2} c^{2}
\end{aligned}
$$

- Now in the lab frame:

$$
\begin{array}{ll}
p_{1}=\left(E_{1} / c, \mathbf{p}_{1}\right) & p_{1} \cdot p_{2}=E_{1} m_{e} \\
p_{2}=\left(m_{e} c, \mathbf{0}\right) & p_{1} \cdot p_{3}=E_{1} E_{3} / c^{2}-\mathbf{p}_{1} \cdot \mathbf{p}_{3}=E_{1} E_{3}(1-\cos \theta) / c^{2} \\
p_{3}=\left(E_{3} / c, \mathbf{p}_{3}\right) & p_{2} \cdot p_{3}=E_{3} m_{e}
\end{array}
$$

