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Announcements

• I will be out of town starting Wednesday afternoon


• Thursday lecture will be given by Prof. W. Trischuk


• I will have to cancel my office hours this week


• please do not hesitate to email me with any questions, etc.



Overview

• Preview of what kind of problems we will deal with

• decay

• scatter


• Review of our tools

• 4-momentum conservation, invariants

• reference frames


• Notation

• Relation between kinematic quantities

• A few examples



Notation

• Note:

• for the most part, we deal with four-momentum


• they may or may not be labeled by their Lorentz index

• “momentum p” implicitly means four-momentum p


• 3-momentum will be explicitly labeled

• either by bold font, arrows, Roman indices


• this notation carries over to the vector algebra

• when there is a dot product, if the quantities are not bold/arrowed, it 

refers to a Lorentz-invariant product

• otherwise, it is a three-vector product.



Relations:

• Some basic kinematic relations:

• Energy, mass, momentum: from our definition


• energy/momentum and velocity

pµ = (E/c,  p) = m�(c, v)
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2-body decay at rest (I)

• Perhaps the easiest kinematic situation

• e.g. K*0(1)→K+(2) + π-(3), calculate outgoing energies


• calculate the energy of particle 2


• note that we don’t really know anything except the masses 

• Approach one: by conservation of energy and momentum (separately):
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2-body decay (II)

• Approach 2: with 4-momentum algebra

• From conservation:


• translate these into masses: 

• Reuse conservation:


• explicitly evaluate p1∙p2 remembering that p1 is at rest

p1 = p2 + p3 p2
1 = (p2 + p3)2 = p2

2 + p2
3 + 2p2 · p3
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Observations
• Start by assigning 4-momenta notation to the incoming and outgoing 

particles and setting up the 4-momentum conservation equation

• In four momentum equations:


• squaring usually terms many of the terms into masses, which are easy to 
deal with (especially if they are zero)

• it also turns it into a scalar equation


• In the CM frame and the lab frame, there are quantities that are zero 
(momentum of initial particle in CM frame, etc.)

• Use these in the four-vector expression (like a dot product) to zero out 

parts of the expression


• Keep an eye out for opportunities to combine E2, p2, m2

• Once you have E or p in you can easily translate between them (and v)

p1 · p2 = E1E2/c2 � p1 · p2 = m1E2



Laboratory scattering

• Consider the process A + B → C where B is at rest.

• What energy of A required to produce C?

• Assign labels (trivial: A →pA, b → pB, C → pC)

• Conservation of 4-momentum:


• Square the equation:


• Now in the lab frame:

pA + pB = pC

(pA + pB)
2 = p2C p2A + p2B + 2(pA · pB) = p2C
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The other way:

• Consider the process A(1) + B(2) → C(3) where B is at rest.

• What energy of A required?


• Energy/momentum conservation:


• square both sides


•  . . . . and so on

EA + EB = EC

pA + pB = pC
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pA = pC

EA +mBc
2 = c

q
p2
A +m2

Cc
2

E2
A +m2

Bc
4 + 2EAmBc

2 = p2
Ac

2 +m2
Cc

4



Application:

• What minimum energy is required for the reaction:


• with one of the initial protons at rest to proceed?

• in the lab frame, it is complicated since the outgoing products must be in 

motion to conserve momentum

• in the CM frame, however, the minimum energy configuration is  where the 

outgoing products are at rest.

• (kinematically equivalent a single particle of mass 4mp)


• set m3 = 4mp, m1,m2 = mp


• E1 = 7 mpc2
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Looking back:

• “classic” vs. “relativistic” kinematics

• recall that in relativity, mass is a form of energy


• it can be interconverted with other forms (kinetic, etc.) as long as 
momentum/energy is conserved overall. It is not separately conserved


• in classical kinematics, mass is conserved, along with energy and 
momentum.


• In our simple examples, the use of four momentum algebra (perhaps) reduced 
the complexity of expressions, though the number of steps was ~same.

• In more complicated examples, you will find it beneficial to use all the tools 

that we have (invariants, reference frames, etc.)



Compton Scattering:
• Consider the process γ + e → γ +e  where the electron is initially at rest.


• If the γ scatters by an angle θ, what is it’s outgoing energy?

• Assign labels: 


• p1 = incoming photon, p2 = initial electron

• p3 = outgoing photon, p4 = outgoing electron


• Conservation of 4-momentum:


• Square the equation:


• Now in the lab frame:
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