## Lecture 3: Special Relativity

H. A. Tanaka

## Announcements

- Office hours:
- Wednesday 1600-1700, Thursdays 1500-1600 (MP801A)
- Vince:
- MP815
- Wednesday 1500-1600


## Overview

- Review central postulates of special relativity
- Review their consequences
- Introduce four vectors and index notation
- Develop Lorentz algebra in terms of index notation
- Define invariant quantities
- Examine the consequences for energy/momentum in special relativity


## Special Relativity

- Postulates:
- the laws of physics are identical in all inertial reference frames.
- the velocity of light is the same in all inertial frames
- Consequences:
- The same speed of light will be observed regardless of whether you are moving towards it or away from it (Michelson-Morley experiment)
- strange velocity addition properties
- Simultaneity is relative; different in different reference frames.
- Lorentz (length) contraction
- Time dilation


## Lorentz Transformation

- In 3D space, we know how coordinates "transform"
- There are corresponding transformations in SR "Lorentz Transformation"
- coordinates and time observed w.r.t. a frame moving with constant velocity w.r.t to the original frame

$$
\begin{array}{ll}
t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} x\right) & t=\gamma\left(t^{\prime}+\frac{v}{c^{2}} x^{\prime}\right) \\
x^{\prime}=\gamma(x-v t) & x=\gamma\left(x^{\prime}+v t^{\prime}\right) \\
y^{\prime}=y & y=y^{\prime} \\
z^{\prime}=z & z=z^{\prime}
\end{array}
$$



$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

## Consequences

- Simultaneity:

$$
t_{A}^{\prime}-t_{B}^{\prime}=\gamma\left(t_{A}-t_{B}+\frac{v}{c^{2}}\left(x_{B}-x_{A}\right)\right)
$$

- length of an object viewed from a moving reference frame

$$
x_{A}^{\prime}-x_{B}^{\prime}=\gamma\left(x_{A}-x_{B}+v\left(t_{B}-t_{A}\right)\right)
$$

- length in non-' system $\left(t_{B}=t_{A}\right)$ is shorter by a factor of $\gamma$
- elapsed time viewed from a moving reference frame

$$
t_{A}^{\prime}-t_{B}^{\prime}=\gamma\left(t_{A}-t_{B}+\frac{v}{c^{2}}\left(x_{B}-x_{A}\right)\right)
$$

- elapsed time is shorter by factor of $\gamma$ (time runs more slowly)
- etc.


## Four vectors:

- In parallel to vectors/rotations in 3D define 4-vectors/Lorentz transformation in 3D+time:
- 3-vectors are objects that correspond to the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ components of something.
- They have definite properties under the transformation of these coordinates. What are they?
- Four vector $\mathrm{x}^{\mu}$ : time + spacial coordinates
- to give them the same units, define $x^{0}=c t$
- $x^{0}=c t, x^{l}=x, x^{2}=y, x^{3}=z, \beta=v / c$

$$
\begin{aligned}
x^{0^{\prime}}=\gamma\left(x^{0}-\beta x^{1}\right) & x^{0}=\gamma\left(x^{\prime 0}+\beta x^{\prime 1}\right) \\
x^{1^{\prime}}=\gamma\left(x^{1}-\beta x^{0}\right) & x^{1}=\gamma\left(x^{1}+\beta x^{\prime 0}\right) \\
x^{2^{\prime}}=x^{2} & x^{2}=x^{\prime 2} \\
x^{3^{\prime}}=x^{3} & x^{3}=x^{\prime 3} \quad \text { symmetric form between } \\
& \\
& \\
& \\
& \\
& \text { time }\left(x^{0}\right) \text { and boosted } \\
&
\end{aligned}
$$

## Matrix Form

- We can write the transformations in matrix form:

$$
\begin{aligned}
& x^{0^{\prime}}=\gamma\left(x^{0}-\beta x^{1}\right) \\
& \left(\begin{array}{l}
x^{0^{\prime}} \\
x^{1^{\prime}} \\
x^{2^{\prime}} \\
x^{3^{\prime}}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right)
\end{aligned}
$$

- boost along y axis? rotation?
- In practice, we usually do not write out matrices.
- use "indices", "summation" to express the matrix algebra

$$
\begin{aligned}
& x^{\mu^{\prime}}=\sum_{\nu} \Lambda_{\nu}^{\mu} x^{\nu} \\
& x^{\mu \prime}=\Lambda_{0}^{\mu} x^{0}+\Lambda_{1}^{\mu} x^{1}+\Lambda_{2}^{\mu} x^{2}+\Lambda_{3}^{\mu} x^{3}
\end{aligned}
$$

- etc.
- we'll see the point of the "upstairs" and "downstairs" index.


## Summation Notation

- It's also a pain to write the "sum" $\Sigma$ all the time
- Einstein invented the "summation" convention:
- if two indices are repeated with the same letter, then summation is implied

$$
x^{\mu \prime}=\sum_{\nu} \Lambda_{\nu}^{\mu} x^{\nu} \rightarrow \Lambda_{\nu}^{\mu} x^{\nu}
$$

- we will apply this convention generally, not just with Lorentz Indices
- repeated indices = "contracted", non-repeated "free"
- Also, define:
- "contravariant" four-vector: $x^{0}=c t, x^{1}=x, x^{2}=y, x^{3}=z$
- "covariant" four-vector: $x_{0}=c t, x_{1}=-x, x_{2}=-y, x_{3}=-z$
- Likewise "contravariant" and "covariant" indices.
- we'll just call them "upstairs" and "downstairs"
- The index notation also is insensitive to ordering of terms


## Metric Tensor

- Contra/covariant vectors are related by the metric tensor g

$$
x^{\mu}=g^{\mu \nu} x_{\nu} \quad g^{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

- the metric tensor reverses the sign of spatial components
- it raises a downstairs index to an upstairs index
- what about $g^{\mu}, g_{\mu}{ }^{v}, g_{\mu v}$ ? What are these quantities?
- Define the "invariant" quantity

$$
g^{\mu \nu} x_{\mu} x_{\nu} \rightarrow x_{\mu} x^{\mu} \quad \text { what is this quantity explicitly? }
$$

- "invariant" because it is the same in all reference frames
- if we Lorentz transform $x$, all the components of $x$ may change, but this combination does not change.
- 3D analog?


## Invariants

- We can classify the invariant quantity into three categories:
- $x^{2}=x_{\mu} x^{\mu}=c^{2} t^{2}-\boldsymbol{x}^{2}>0$ (timelike)
- $x^{2}=0$ (lightlike)
- $x^{2}<0$ (spacelike)
- Since $x^{2}$ is the same in all reference frames, all observers agree on the categories
- Implications for causality:
- spacelike events cannot be causally connected (one cannot cause the other)
- why?


## Benefits

- What's the point of "up/downstairs", "contra/covariant"?
- we have a funny concept of the "length" or "magnitude" of a four-vector, i.e. invariant quantities
- relative sign between the time and space components
- The component convention allows a way of creating invariant quantities and also check equivalence of the quantities
- think about row vectors, column vectors, matrices, etc.
- It boils down to:
- Expressions must have the matching free upstairs and downstairs indices ("free" = "unsummed")
- Summed indices must be pairs of upstairs and downstairs


## Generalizing

- Take any two four-vectors (say $a, b$ ) and their product

$$
a \cdot b=a^{\mu} b_{\mu}=a_{\mu} b^{\mu}=a^{\mu} b^{\nu} g_{\mu \nu} . .
$$

- this will also be invariant with respect Lorentz transforms
- (3D analog?)
- The indices give us a way to classify quantities and how they transform
- invariant/"scalar": no free indices: no transformation at all
- vector: one $\Lambda$ for the single free index

$$
x^{\mu \prime}=\Lambda_{\nu}^{\mu} x^{\nu}
$$

- Tensor: one $\Lambda$ for each free index

$$
\Lambda_{1}^{\mu \nu \prime} \rightarrow \Lambda_{2}{ }_{\rho}^{\mu} \Lambda_{2}{ }_{\sigma}^{\nu} \Lambda_{1}{ }^{\rho \sigma} \quad x^{\mu \prime} y^{\nu \prime}=\Lambda_{\rho}^{\mu} \Lambda_{\sigma}^{\nu} x^{\rho} y^{\sigma}
$$

- take any of these expressions and move indices up/down
- (put in a g with a repeated index if it helps make things clearer)


## Momentum:

- We have dealt with one kind of four vector (coordinate)
- Are there others?
- We can construct the "energy/momentum" four vector by considering the proper time:

$$
\tau=\frac{t}{\gamma}
$$

- this corresponds the elapsed time in the rest frame of whatever system you are looking at.
- If we take derivatives of the space-time coordinates wrt $\tau$, we end up with the quantities

$$
\eta^{\mu}=\frac{d x^{\mu}}{d \tau}=\gamma\left(\frac{d(c t)}{d t}, \frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right)=\gamma(c, \vec{v})
$$

- it's easy to show that $\eta^{\mu} \eta_{\mu}=\mathrm{c}^{2} \rightarrow \eta^{\mu}$ is a four-vector


## Energy/Momentum

- Now multiply $\eta^{\mu}$ by the mass of the object to define $p^{\mu}$
- $\mathbf{p}^{\mu}=(\gamma m c, \gamma m v)=(E / c, p)$
- this defines the energy and momentum of an object (4-momentum) with invariant product $p^{\mu} p_{\mu}=m^{2} c^{2}$
- we find that these quantities are conserved
- How do we know this?
- each component of the 4-momentum is the same before and after a process or reaction
- We will find that there are other four vectors
- electric charge and current density
- particle number and flow density


## Decays and Scatters

- We will typically consider two kinds of processes:
- Decays: $\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}+$. .

- Scattering: $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}+\mathrm{E}+\ldots$

- "What is the energy/momentum of the outgoing particles?"


## Basic Tools: Conservation

- Energy conservation:
why i,j different but $\mu$ the same?

$$
\sum_{i} E_{i}^{i}=\sum_{J} E_{i}^{j}
$$

- $I=$ "initial", $F=$ "final"
- Momentum conservation:

$$
\begin{aligned}
\sum_{i} p_{x I}^{i} & =\sum_{j} p_{x F}^{j} \\
\sum_{i} p_{y_{I}}^{i} & =\sum_{j} p_{y_{F}}^{j} \\
\sum_{i} p_{z I}^{i} & =\sum_{j} p_{z F}^{j}
\end{aligned}
$$

$$
\sum_{i} \vec{p}_{I}^{i}=\sum_{j} \vec{p}_{F}^{j}
$$

Four equations relating the initial and final state energies and momenta

## Invariance:

- We discussed the "dot product" of two four vectors:
- $a \cdot b=a^{0} b^{0}-a^{1} b^{1}-a^{2} b^{2}-a^{3} b^{3}=a^{0} b^{0}-a \cdot b$
- $=a^{\mu} b_{\mu}, a_{\mu} b^{\mu}, g_{\mu \nu} a^{\mu} b^{\nu}$, etc.
- Explicitly in terms of two 4-momentum vectors:
- $p_{1} \cdot p_{2}=p_{1}{ }^{0} p_{2}{ }^{0}-p_{1}{ }^{1} p_{2}{ }^{1}-p_{1}{ }^{2} p_{2}{ }^{2}-p_{1}{ }^{3} p_{2}{ }^{3}=E_{1} E_{2} / c^{2}-p_{1} \cdot p_{2}$
- the dot product of a four momentum with itself:
- $p_{1} \cdot p_{1}=p_{1}{ }^{2}=\left(E_{1} / c\right)^{2}-p_{1}{ }^{2}=\ldots$.
- Invariants are useful because
- they are the same in all reference frames
- reduces multicomponent equation to scalar quanties
- they may save you from having to explicitly evaluate by choosing a reference frame/coordinate frame
- If massless particles are involved, it will eliminate terms


## Reference Frames

- We will typically operate in two kinds of reference frames
- "Center-of-momentum":
- sum of momentum is zero

$$
\sum_{i} \vec{p}_{I}^{i}=0
$$

- e.g. colliding beams, decay at rest

- "Lab frame": scattering one particle at rest:



## Notation

- Note:
- for the most part, we deal with four-momentum
- they may or may not be labeled by their Lorentz index
- "momentum p" implicitly means four-momentum p
- 3-momentum will be explicitly labeled
- either by bold font or arrows
- this notation carries over to the vector algebra
- when there is a dot product, if the quantities are not bold/arrowed, it refers to a Lorentz-invariant product
- otherwise, it is a three-vector product.


## Summary

- I hope the basic concepts of SR are already familiar to you
- Postulates, consequences
- Lorentz transformations
- invariant quantities
- What may be new to you is the index notation and the associated algebra
- Organize all the algebra and ensuring that all the things come out correctly
- Tells us what kind of quantity we are dealing with, what we can do with it.
- Makes the process "mechanical" so we don't have to worry about it.
- In addition to space-time 4-vectors, we have energy-momentum 4-vectors
- Oth component is energy, 1-3 components are (3) momentum
- invariant quantity is the mass-squared of the particle
- we will primarily deal with energy-momentum 4 -vectors in the class to express kinematic constraints (energy, momentum conservation, etc.).

