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Announcements

• Office hours:


• Wednesday 1600-1700, Thursdays 1500-1600 (MP801A)


• Vince:


• MP815


• Wednesday 1500-1600



Overview

• Review central postulates of special relativity

• Review their consequences

• Introduce four vectors and index notation

• Develop Lorentz algebra in terms of index notation

• Define invariant quantities

• Examine the consequences for energy/momentum in special relativity



Special Relativity

• Postulates:

• the laws of physics are identical in all inertial reference frames.

• the velocity of light is the same in all inertial frames


• Consequences:

• The same speed of light will be observed regardless of whether 

you are moving towards it or away from it (Michelson-Morley 
experiment)

• strange velocity addition properties


• Simultaneity is relative; different in different reference frames. 

• Lorentz (length) contraction

• Time dilation



Lorentz Transformation
• In 3D space, we know how coordinates “transform” 

• There are corresponding transformations in SR “Lorentz Transformation”


• coordinates and time observed w.r.t. a frame moving with constant velocity 
w.r.t to the original frame

t = �(t� + v
c2 x�)

x = �(x� + vt�)
y = y�

z = z�

t� = �(t� v
c2 x)

x� = �(x� vt)
y� = y
z� = z

x

y

z
x’

y’

z’

v
� =

1�
1� v2

c2



Consequences

• Simultaneity:


• length of an object viewed from a moving reference frame


• length in non-’ system (tB=tA) is shorter by a factor of γ 


• elapsed time viewed from a moving reference frame


• elapsed time is shorter by factor of γ (time runs more slowly)

• etc.
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Four vectors:

• In parallel to vectors/rotations in 3D define 4-vectors/Lorentz transformation 
in 3D+time:

• 3-vectors are objects that correspond to the x, y, z components of 

something.

• They have definite properties under the transformation of these 

coordinates. What are they?

• Four vector xµ: time + spacial coordinates


• to give them the same units, define x0=ct

• x0 = ct, x1 = x, x2 = y, x3=z, β=v/c
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x3 = x�3 symmetric form between 
time (x0) and boosted 
coordinate (x1 in this case)
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Matrix Form

• We can write the transformations in matrix form:


• boost along y axis? rotation?

• In practice, we usually do not write out matrices. 


• use “indices”, “summation” to express the matrix algebra


• etc.

• we’ll see the point of the “upstairs” and “downstairs” index.
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Summation Notation

• It’s also a pain to write the “sum” Σ all the time

• Einstein invented the “summation” convention:


• if two indices are repeated with the same letter, then summation is implied


• we will apply this convention generally, not just with Lorentz Indices

• repeated indices = “contracted”, non-repeated “free”


• Also, define:

• “contravariant” four-vector: x0=ct, x1 = x, x2 = y, x3=z 

• “covariant” four-vector: x0=ct, x1 = -x, x2 = -y, x3 = -z 

• Likewise “contravariant” and “covariant” indices.

• we’ll just call them “upstairs” and “downstairs”


• The index notation also is insensitive to ordering of terms
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Metric Tensor
• Contra/covariant vectors are related by the metric tensor g


• the metric tensor reverses the sign of spatial components

• it raises a downstairs index to an upstairs index

• what about gµν, gµν, gµν? What are these quantities? 

• Define the “invariant” quantity


• “invariant” because it is the same in all reference frames

• if we Lorentz transform x, all the components of x may change, but this 

combination does not change.

• 3D analog?
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Invariants

• We can classify the invariant quantity into three categories:

• x2 = xµ xµ =c2t2 - x2> 0 (timelike)

• x2= 0 (lightlike)

• x2< 0 (spacelike)


• Since x2 is the same in all reference frames, all observers agree on the 
categories


• Implications for causality:

• spacelike events cannot be causally connected (one cannot cause the other)

• why?



Benefits

• What’s the point of “up/downstairs”, “contra/covariant”?

• we have a funny concept of the “length” or “magnitude” of a four-vector, 

i.e. invariant quantities 

• relative sign between the time and space components


• The component convention allows a way of creating invariant quantities and 
also check equivalence of the quantities

• think about row vectors, column vectors, matrices, etc.

• It boils down to:


• Expressions must have the matching free upstairs and downstairs 
indices (“free” = “unsummed”)


• Summed indices must be pairs of upstairs and downstairs



Generalizing

• Take any two four-vectors (say a, b) and their product 


• this will also be invariant with respect Lorentz transforms

• (3D analog?)


• The indices give us a way to classify quantities and how they transform

• invariant/“scalar”: no free indices: no transformation at all

• vector: one Λ for the single free index


• Tensor: one Λ for each free index


• take any of these expressions and move indices up/down 

• (put in a g with a repeated index if it helps make things clearer)
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Momentum:

• We have dealt with one kind of four vector (coordinate)

• Are there others?


• We can construct the “energy/momentum” four vector by considering the 
proper time:


• this corresponds the elapsed time in the rest frame of whatever system 
you are looking at.


• If we take derivatives of the space-time coordinates wrt τ, we end up with 
the quantities


• it’s easy to show that ηµηµ = c2  → ηµ is a four-vector
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Energy/Momentum

• Now multiply ηµ by the mass of the object to define pµ 

• pµ = (γmc, γmv) = (E/c, p) 
• this defines the energy and momentum of an object (4-momentum) with 

invariant product pµpµ = m2c2


• we find that these quantities are conserved 

• How do we know this?

• each component of the 4-momentum is the same before and after a 

process or reaction

• We will find that there are other four vectors


• electric charge and current density

• particle number and flow density



• We will typically consider two kinds of processes:

• Decays: A→B+C+ . . 


• Scattering: A + B → C + D + E +  . . 


• “What is the energy/momentum of the outgoing particles?”
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Basic Tools: Conservation

• Energy conservation:


• I = “initial”, F =“final”

• Momentum conservation:
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Four equations relating the initial and 
final state energies and momenta



Invariance:

• We discussed the “dot product” of two four vectors:

• a∙b = a0b0 - a1b1-a2b2 -a3b3 = a0b0-a∙b 
• = aµbµ, aµbµ, gµν aµbν, etc.


• Explicitly in terms of two 4-momentum vectors:

• p1∙p2 = p10p20 - p11p21-p12p22 -p13p23 = E1E2/c2 - p1∙p2 

• the dot product of a four momentum with itself:

• p1∙p1 = p12 = (E1/c)2 - p12 =  . . . . .


• Invariants are useful because 

• they are the same in all reference frames 

• reduces multicomponent equation to scalar quanties

• they may save you from having to explicitly evaluate by choosing a 

reference frame/coordinate frame

• If massless particles are involved, it will eliminate terms



Reference Frames
• We will typically operate in two kinds of reference frames

• “Center-of-momentum”:


• sum of momentum is zero

• e.g. colliding beams, decay at rest


• “Lab frame”: scattering one particle at rest:
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Notation

• Note:

• for the most part, we deal with four-momentum


• they may or may not be labeled by their Lorentz index

• “momentum p” implicitly means four-momentum p


• 3-momentum will be explicitly labeled

• either by bold font or arrows


• this notation carries over to the vector algebra

• when there is a dot product, if the quantities are not bold/arrowed, it 

refers to a Lorentz-invariant product

• otherwise, it is a three-vector product.



Summary
• I hope the basic concepts of SR are already familiar to you


• Postulates, consequences

• Lorentz transformations

• invariant quantities


• What may be new to you is the index notation and the associated algebra

• Organize all the algebra and ensuring that all the things come out correctly

• Tells us what kind of quantity we are dealing with, what we can do with it.

• Makes the process “mechanical” so we don’t have to worry about it.


• In addition to space-time 4-vectors, we have energy-momentum 4-vectors

• 0th component is energy, 1-3 components are (3) momentum

• invariant quantity is the mass-squared of the particle

• we will primarily deal with energy-momentum 4-vectors in the class to 

express kinematic constraints (energy, momentum conservation, etc.).


