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PARTICLE DETECTORS
AND ACCELERATORS



ANNOUNCEMENTS

Typo in problem set 1

Problem 2 (5 pts): Draw Feynman diagrams for the dominant contributions to the following
processes:

o B+—>Z§O+e++ye

thanks to Eric Yeung for pointing this out

Oftice hours:
1500-1600 on Thursdays



Wuares, Newmancs, MEsons. ALL THOSE Drm PARTICLES
TOU CANT Sec. THrs WHAT DRovE ME To DRAK,
BUT NOW | can SEE Frem / °




BASIC DETECTION PRINCIPLES

lonization

electrons unbounded from their atoms by electromagnetic disturbance of
charged particle passing nearby.

Cherenkov radiation
light emitted by charged particle exceeding the speed of light
Scintillation:
molecular excitations leading to light emission
Thermal
heat deposited/phonons generated by particle
Other..... (maybe your ideal)

The primary detection mechanism is usually accompanied by amplification to
make the signal (usually electric) macroscopic

semiconductor (electron/hole pair)
vacuum/electrostatic

gas avalanche



........

Emulsion in the ’ /’i, M1

IONIZATION: oPERA experiment [ I

from CERN 4{:%—1-& illlissounill
? 8 daughter
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Cloud chamber: \

ionization induces droplet formation in super-
saturated gas.

Particle trajectory “recorded” by trail of
droplets which are then photographed.
Bubble chamber:

ionization induces bubble formation in
superheated liquid

provides much more “target mass” when
considering scattering of particles

Emulsion:
chemical transformation induced by ionization




From pdg.lbl.gov
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Features:
rapid rise towards low energy/momenta
slow rise in high momentum region (“relativistic rise”)

minimum in between: “minimum ionization particle” or “MIP"


http://pdg.lbl.gov

[ONIZATION LOSS:

CERN

Two examples of m = yu = e decay. Note:
magnetic field
"darkness” and “thickness” of the track

From the curvature we have an independent
measurement of the momentum

Together with the velocity estimated from the ionization

loss, we can estimate the mass of the particle.

p=ymv = m= 1

YU

"particle

3

identification”

dE/dx [mip]

from NA61/SHINE
collaboration

=
—
-d
-
.
.
1
-
—
—
-
=
-
—e
—
-




TOWARDS THE ELECTRONIC ERA

Spark Chamber:

Adjacent wires/planes at
relatively relatively high voltages

lonization from passing particle
results in “break down”and a
spark

Visible, but can also be detected
by pulse current on the wires
which can be recorded

electronically

With increasing statistics critical to:
faster detector response/less dead time

automation of data analysis



MULTI WIRE PROPORTIONAL COUNTER

from nobelprize.org

Source of particles
Cathode

Particle

Cathode planes

Anode wire

“Drift chamber”

lonization from charged particle eels electrons + ions
anode wires attract electrons, cathode plane attracts ions

acceleration of electrons results in more ionization,
etc. an "avalanche” that results in “gain/
amplification” of signal .

dnfting

Use time between primary ionization and detection (" drift") | [ ekecrons /

to refine measurement

Time Projection Chamber:

“drift” the electrons all the way to one side of the detector

and read it out there

use drift time to infer coordinate along the drift direction

3D tracking!



http://nobelprize.org

SILICON

* Typically: reversed biased pn junction collects electron-
hole pairs produced by ionizing particles passing through

* Miniaturization allows extreme precision:
* devices laid out in strips or pixels

* Ubiquitous now as first layer of tracking in collider
experiments

» detached vertices, etc. arising from decays of short
ived particles.

* vertex displacement for time-dependent studies, etc.
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Bremsstrahlung:
\ Lead (Z=82) | “braking radiation”

radiation of photons from acceleration of electron

Bremsstrahlung

in the intense field near an atomic nucleus
Tonization i . RadlatIOﬂ |eﬂgth " XO

characteristic distance over which electrons
will emit a Bremsstrahlung photon

Positron >
annihilation

Photon pair production/conversion:

Process where photon “converts” to ee” pair

at high energies “conversion length” = 9/7 X,

Cu| 29 2.0 1.4
Pb | 82 11.4 0.6




CHERENKOV RADIATION

O-cos'(1/nP) Wavefront

EM radiation emitted in when a charged particle exceeds
velocity of light in a dielectric medium

optical analog of “sonic boom”
blue-shifted optical light (1//12)

For water, n ~ 1.33
“threshold” for C radiation is 0.75 ¢
® ~42°torv~c



http://findagrave.com

APPLICATIONS;

Threshold counter:

Use gas or other
transparent material

Transparent - — , tO Set d V@lOCity

gas

threshold with
appropriate
refractive index

from BaBar collaboration
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from Super-Kamiokande collaboration
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EXAMPL

IN antarctic ice

Statlons on the surface will
gather data from the dgital
cptcal medules, which is then
collected at the iceCube lab

L]
L]

The IceCube comprises an array of
86 strings. containing 5,160

modules. This arrangement allows
scientists to trace the paths of
muons from their trai of ight

radiation as they pass through the
massive structure

1 km?3 array of photosensors

embedded

lceCube
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From hamamatsu.com

P H O T O M U LT ‘ P | E R From hamamatsu.com

Stem pins
(leads

Focusing electrode Last dynode

Secondary Vacuum
electron (approx. 10-4 Pa)

Incident
light

Light input

window

Electron multiplier
Photocathode (dynode)

How to detect light?

photon on photocathode can eject an electron

electron is accelerated to a "dynode” with high voltage (~1 kV) r‘:i_mijp‘er-Kamiokande
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dynode releases more electrons which continue to the next
dynode, amplifying the signal

photon is “covered” to an electric pulse.

Latest innovations include silicon based detection and amplification

from BABAR



http://hamamatsu.com
http://hamamatsu.com

UNINTENTIONAL CHERENKOYV

“Bugorski, a 36-year-old researcher at the Institute for
High Energy Physics in Protvino, was checking a piece of
accelerator equipment that had malfunctioned - as had,
apparently, the several safety mechanisms. Leaning over
the piece of equipment, Bugorski stuck his head in the
space through which the beam passes on its way from
one part of the accelerator tube to the next and saw a
flash brighter than a thousand suns. He felt no

pain.” (WIRED magazine)

Several other reports of observing
Cherenkov radiation with the human eye:

astronauts report observing “flashes”

in space (debated)

criticality accidents at nuclear reactors




SCINTILLATION

General idea:

band gap between ground and excited states s

ionization induces excitations with decay to ground state, emitting
photons

examples:
organic scintillators: usually hydrocarbons in both solid and liquid form

polystyrene

from KamLAND collaboration

linear alkylbenzene
inorganic crystals (Nal, Csl, PboWQO,)

Person (for scale) -

Access Chimney

Noble gases/liquids (Ar, Xe, etc.)

Liquid Scintillator Volume
from LUX collaboration

from CMS collaboration

Photomultiplier Tubes
Buffer Oil Volume

Stainless Steel Vessel

Water Cherenkov Detector



NEUTRAL PARTICLES

To first order:
make it interact to produce/eject charged particles and observe those
wait for it to decay (if it does decay) into charge particles

it “daughter” particles are neutral, may need to have those decay.

ThreeO examples in this picture:
m — Y + Y decay

oY then “converts” toe +e
+

K —=mn + m decay

antineutron annihilates on a proton
Other examples:
neutrons can capture to produce photons:
n+p—>d+y(2.2MeV)
neutrino interactions:

Vp+n—>p'—|—p

+p =V +
V,tp 2V, +p

V +te 2>V +e
H H



ELECTROMAGNETIC SHOW

Cascade of electromagnetic interactions from :
bremsstrahlung and photon conversion

allows particle identification of e/y from more
massive particles that exhibit “mip” behaviour

Similar processes can happen hadronically (via hadronic
interactions)
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Basic principle:

use electric fields to accelerate
charged particles (usually e or p/p)

most acceleration is done by RF
alternating currents to “pull”

and “push” t

magnetic fields

role in guiding and focussing

particles.

ne particles

olay an essential

&
Oseillator /s
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FIXED TARGET VS. COLLI

A

D ER

Fixed target:

incident “beam”
particle on stationary
“target” particle

B

>

Collider:

two beams of
particles in opposite

directions collide
JAN B

> <

EC’M ~ 2 X Ebeam

EC’M ~ \/QEA X m302




SECONDARY BEAMS:

Beams of “secondary” particles produced from other
Interactions.

Typical arrangement:

"primary” proton beam strikes a target



NEXT TIM

Move to more "quantitative" discussion about Special
Relativity and relativistic kinematics.



