Weak Interaction of Hadrons and Neutral Current

H. A. Tanaka

Midterm:

- Replace the midterm grade with final grade is higher
- i.e. if final grade > midterm grade, final is worth 60% of your grade.
- otherwise, midterm is 20\%, final is 40\% (as before).

So far:

- Examined the weak charged current interaction of leptons (muon decay, etc.)
- We saw how the coupling includes a vector and axial-vector piece
- parity violation is built into the weak interaction
- From a calculation standpoint, the new element is g5:
- we learned how to evaluate traces with g5
- Now we move on to quarks. Two issues arise:
- Quarks are in bound states that we don't know how to describe
- we'll need to make some guesses/ansatz
- Quarks can transition between "generations"
- Leptons always stay within their generation

Pion Decay:

- Lepton fermion leg

$$
\left[\bar{u}_{3} \frac{-i g_{w}}{2 \sqrt{2}} \gamma^{\mu}\left(1-\gamma^{5}\right) v_{2}\right]
$$

- Quark Fermion leg

$$
\left[\bar{v}_{b} \frac{-i g_{w}}{2 \sqrt{2}} \gamma^{\nu}\left(1-\gamma^{5}\right) u_{a}\right]
$$

$$
\left[\bar{v}_{b} \frac{-i g_{w}}{2 \sqrt{2}} \gamma^{\nu}\left(1-\gamma^{5}\right) u_{a}\right] \Rightarrow F^{\nu}=f_{\pi} p^{\nu}
$$

- Propagator

$$
\begin{array}{r}
\int \frac{1}{(2 \pi)^{4}} d^{4} q \frac{i g_{\mu \nu}}{M_{W}^{2} c^{2}} \\
\mathcal{M}=\frac{g_{W}^{2}}{8 M_{W}^{2} c^{2}}\left[\bar{u}_{3} \gamma^{\mu}\left(1-\gamma^{5}\right) v_{2}\right] f_{\pi} p_{\mu}
\end{array}
$$

Summing over spins:

$$
\begin{aligned}
& \mathcal{M M}^{*}=\left(\frac{g^{2}}{8 M_{W}^{2} c^{2}}\right)^{2}\left[\bar{u}_{3} \gamma^{\mu}\left(1-\gamma^{5}\right) v_{2}\right]\left[\bar{u}_{3} \gamma^{\nu}\left(1-\gamma^{5}\right) v_{2}\right]^{*} f_{\pi}^{2} p_{\mu} p_{\nu} \\
& \sum_{i}\left[\bar{u}(a) \Gamma_{1} u(b)\right]\left[\bar{u}(a) \bar{\Gamma}_{2} u(b)\right]^{*}=\operatorname{Tr}\left[\Gamma_{1}\left(\not p_{b}+m_{b} c\right) \bar{\Gamma}_{2}\left(\not p_{a}+m_{a} c\right)\right]
\end{aligned}
$$

a, b spins

$$
\begin{aligned}
& \left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{g_{W}^{4}}{64 M_{W}^{4} c^{4}} f_{\pi}^{2} p_{\mu} p_{\nu} \\
& \quad \operatorname{Tr}\left[\gamma^{\mu}\left(1-\gamma^{5}\right)\left(\not p_{2}\right) \gamma^{\nu}\left(1-\gamma^{5}\right)\left(\not p_{3}+m_{l} c\right)\right]
\end{aligned}
$$

- We've done this trace already:

$$
\operatorname{Tr} \Rightarrow 8 \times\left[p_{2}^{\mu} p_{3}^{\nu}+p_{2}^{\nu} p_{3}^{\mu}-g^{\mu \nu} p_{2} \cdot p_{3}-i \epsilon^{\mu \nu \lambda \sigma} p_{2 \lambda} p_{3 \sigma}\right]
$$

- So:

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{f_{\pi}^{2} g_{W}^{4}}{8 M_{W}^{4} c^{4}}\left[2 \times\left(p \cdot p_{2}\right)\left(p \cdot p_{3}\right)-p^{2}\left(p_{2} \cdot p_{3}\right)\right]
$$

Decay Rate:

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{f_{\pi}^{2} g_{W}^{4}}{8 M_{W}^{4} c^{4}}\left[2 \times\left(p \cdot p_{2}\right)\left(p \cdot p_{3}\right)-p^{2}\left(p_{2} \cdot p_{3}\right)\right]
$$

- Going into the rest frame of the decay, we can work out the kinematics:
- Recall that " 2 " is the outgoing neutrino which we take to be massless

$$
\begin{aligned}
& p=p_{2}+p_{3} \\
& p \cdot p_{2}=\left(p_{2}+p_{3}\right) \cdot p_{2}=p_{2} \cdot p_{3} \quad p \cdot p_{3}=\left(p_{2}+p_{3}\right) \cdot p_{3}=p_{2} \cdot p_{3}+m_{l}^{2} c^{2} \\
& p^{2}=p_{2}^{2}+p_{3}^{2}+2 p_{2} \cdot p_{3} \quad 2 p_{2} \cdot p_{3}=m_{\pi}^{2} c^{2}-m_{l}^{2} c^{2}
\end{aligned}
$$

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{f_{\pi}^{2} g_{W}^{4}}{16 M_{W}^{4} c^{4}} m_{l}^{2}\left(m_{\pi}^{2}-m_{l}^{2}\right)
$$

$$
\left.\Gamma=\left.\frac{\left|\mathbf{p}_{2}\right|}{8 \pi \hbar m_{\pi}^{2} c}\langle | \mathcal{M}\right|^{2}\right\rangle
$$

$$
\left|\mathbf{p}_{2}\right|=\frac{c}{2 m_{\pi}}\left(m_{\pi}^{2}-m_{l}^{2}\right)
$$

$$
\Gamma=A \times m_{l}^{2}\left(m_{\pi}^{2}-m_{l}^{2}\right)^{2}
$$

Now Consider the $l=\mu / \mathrm{e}$

$$
\Gamma_{l}=A \times m_{l}^{2}\left(m_{\pi}^{2}-m_{l}^{2}\right)^{2}
$$

- We take the ratio of the decay rates:

$$
\frac{\Gamma_{e}}{\Gamma_{\mu}}=\frac{m_{e}^{2}\left(m_{\pi}^{2}-m_{e}^{2}\right)^{2}}{m_{\mu}^{2}\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}}=1.28 \times 10^{-4}
$$

$$
\begin{aligned}
\pi^{-} & \rightarrow e^{-}+\bar{\nu}_{e} \\
\pi^{-} & \rightarrow \mu^{-}+\bar{\nu}_{\mu}
\end{aligned}
$$

- using the known masses of e $/ \mu / \pi$
- Experiments can measure this and obtain (1.230 $\pm 0.004) \times 10^{-4}$
- The PIENU experiment at TRIUMF will use this to test the universality of the lepton coupling to the W.

$$
\begin{aligned}
\mathrm{m}_{\mathrm{e}} & =0.511 \mathrm{MeV} / \mathrm{c}^{2} \\
\mathrm{~m}_{\mu} & =105.66 \mathrm{MeV} / \mathrm{c}^{2} \\
\mathrm{~m}_{\pi} & =139.57 \mathrm{MeV} / \mathrm{c}^{2}
\end{aligned}
$$

The PIENU Experiment at TRIUMF

Improved Measurement of the $\boldsymbol{\pi} \rightarrow \mathrm{e} \nu$ Branching Ratio

A. Aguilar-Arevalo, ${ }^{1}$ M. Aoki, ${ }^{2}$ M. Blecher, ${ }^{3}$ D. I. Britton, ${ }^{4}$ D. A. Bryman, ${ }^{5}$ D. vom Bruch, ${ }^{5}$ S. Chen, ${ }^{6}$ J. Comfort, M. Ding, ${ }^{6}$ L. Doria, ${ }^{8}$ S. Cuen-Rochin, ${ }^{5}$ P. Gumplinger, ${ }^{8}$ A. Hussein, ${ }^{9}$ Y. Igarashi, ${ }^{10}$ S. Ito, ${ }^{2}$ S. H. Kettell, ${ }^{11}$ L. Kurchaninov, ${ }^{8}$ L. S. Littenberg, ${ }^{11}$ C. Malbrunot, ${ }^{5}{ }^{,{ }^{4}}$ R.E. Mischke, ${ }^{8}$ T. Numao, ${ }^{8}$ D. Protopopescu, ${ }^{4}$ A. Sher, ${ }^{8}$ T. Sullivan, ${ }^{5}$ D. Vavilov, ${ }^{8}$ and K. Yamada ${ }^{2}$

(PIENU Collaboration)

${ }^{1}$ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Mexico, Distrito Federal 04510 México ${ }^{2}$ Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan ${ }^{3}$ Physics Department, Virginia Tech, Blacksburg, Virginia 24061, USA
${ }^{4}$ Physics Department, University of Glasgow, Glasgow G12 8QQ, United Kingdom
${ }^{5}$ Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T IZ1, Canada ${ }^{6}$ Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China
${ }^{7}$ Physics Department, Arizona State University, Tempe, Arizona 85287, USA
${ }^{8}$ TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
${ }^{9}$ University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
KEK, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801, Japan
Brookhaven National Laboratory, Upton, New York 11973-5000, USA (Received 8 June 2015; published 13 August 2015)
A new measurement of the branching ratio $R_{e / \mu}=\Gamma\left(\pi^{+} \rightarrow e^{+} \nu+\pi^{+} \rightarrow e^{+} \nu \gamma\right) / \Gamma\left(\pi^{+} \rightarrow \mu^{+} \nu+\pi^{+} \rightarrow \mu^{+} \nu \gamma\right)$ resulted in $R_{e / \mu}^{\text {exp }}=[1.2344 \pm 0.0023$ (stat) $\pm 0.0019($ syst $)] \times 10^{-4}$. This is in agreement with the standard model prediction and improves the test of electron-muon universality to the level of 0.1%.

Kaons:

$$
\frac{\Gamma_{e}}{\Gamma_{\mu}}=\frac{m_{e}^{2}\left(m_{K}^{2}-m_{e}^{2}\right)}{m_{e}^{2}\left(m_{K}^{2}-m_{\mu}^{2}\right)}=2.57 \times 10^{-5}
$$

- Branching fractions:
- $\mathrm{K}^{+} \rightarrow \mathrm{e}^{+}+\mathrm{v}_{\mathrm{e}}=(1.582 \pm 0.007) \times 10^{-5}$
- $\mathrm{K}^{+} \rightarrow \mu^{+}+\mathrm{v}_{\mu}=0.6356 \pm 0.0011$
- Ratio $=2.49 \times 10^{-5}$
- Can also apply to D^{+}and B^{+}, but:
- electronic decay mode for D^{+}not observed yet ($\mathrm{BR}<8.8 \times 10^{-6}$)
- electronic/muonic decay mode for B^{+}not observed yet ($\mathrm{BR}<10^{-6}$)

Weak interactions of leptons

$\frac{-i g_{w}}{2 \sqrt{2}} \gamma^{\mu}\left(1-\gamma^{5}\right)$

v_{e}	v_{μ}	v_{τ}
e	μ	τ

- We have used the following Feynman rule for the vertex of a leptonic weak interaction
- This had two properties:
- the neutrino and lepton must "match"
- the coupling is the same for each lepton type
- We say that the interaction is "diagonal" with respect to lepton flavor and that the coupling is "universal"

Weak Interaction of the quarks

- We'll step back several decades to 1963 when we only knew of three quarks (sort of)
- People noticed that decays of strange particles to non-strange particles were "slower" than expected
- We can compare pion and kaon decays:

$$
\begin{gathered}
\Gamma=\frac{f_{\pi}^{2}}{\pi \hbar m_{\pi}^{3}}\left(\frac{g_{w}}{4 M_{W}}\right)^{4} m_{l}^{2}\left(m_{\pi}^{2}-m_{l}^{2}\right)^{2} \\
\frac{\Gamma\left(K^{-} \rightarrow \mu^{-}+\nu_{\mu}\right)}{\Gamma\left(\pi^{-} \rightarrow \mu^{-}+\nu_{\mu}\right)}=\left(\frac{m_{\pi}}{m_{K}}\right)^{3}\left(\frac{m_{K}^{2}-m_{\mu}^{2}}{m_{\pi}^{2}-m_{\mu}^{2}}\right)^{2} \sim 18
\end{gathered}
$$

Cabibbo Angle:

- Experimentally, the ratio is more like 1.3, indicating that something is missing from the above analysis.

- With this, Cabibbo was able to relate a host of decay of strange and non-strange particles
- Overall, it shows that $u \leftrightarrow s$ are disfavored while are $u \leftrightarrow d$ are favored

A Problem:

- The above process should occur as $\mathrm{K}^{0} \rightarrow \mu+\mu$
- But it doesn't (or at least a rate much less than expected even after taking into account the Cabibbo factors)

The GIM Mechanism (1970)

u	c
d	s

$A_{1} \sim \sin \theta_{C} \cos \theta_{C}$

$$
\binom{d^{\prime}}{s^{\prime}}=\left(\begin{array}{cc}
\cos \theta_{C} & \sin \theta_{C} \\
-\sin \theta_{C} & \cos \theta_{C}
\end{array}\right)\binom{d}{s}
$$

- Introduce 4th quark (charm) with coupling -sin θ_{C}
- Cancels contribution from u quark
- Formalizes idea of "generations"
- Mass eigenstates "rotated" slightly from "flavour" (or weak) eigenstates

The "November" Revolution

- 1974: Discovery of the J/ ψ meson at BNL, SLAC
- $e^{+} e^{-}$and $q \bar{q}$ collisions produce a cc̄ state
- Confirmation of GIM model

1974 Nobel Prize in Physics

CP Violation and the 3rd generation

- Prior to the discovery of charm, Kobayashi and Maskawa contemplated CP violation (discovered in 1964)
- One way to introduce CP violation is by having a complex phase
- This will switch sign from quark \leftrightarrow antiquark, changing the amplitude
- Found no way to introduce a complex phase with 2 generations
- Concluded that three generations are needed to have complex phase

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

- Cabibbo matrix incorporated as upper $2 x 2$ part of 3×3 matrix.

$$
\left|U_{C K M}\right| \sim\left(\begin{array}{ccc}
0.9738 & 0.2272 & 0.0040 \\
0.2271 & 0.9730 & 0.0422 \\
0.0081 & 0.0416 & 0.9991
\end{array}\right)
$$

How it works:

- A factor of V_{ab} is applied for $\mathrm{a} \rightarrow \mathrm{b}$ transition:
- e.g. $V_{u d}$ refers to $u \rightarrow d+W^{+}$
- A factor of $\mathrm{V}_{\mathrm{ab}}{ }^{*}$ is applied for $\mathrm{b} \rightarrow \mathrm{a}$ transition
- e.g. $V_{u d}{ }^{*}$ for $d \rightarrow u+W^{-}$
- (I think the book has it reversed)

$$
V_{u d}^{*} \frac{-i g_{w}}{2 \sqrt{2}} \gamma^{\mu}\left(1-\gamma^{5}\right)
$$

$$
V_{u s} \frac{-i g_{w}}{2 \sqrt{2}} \gamma^{\nu}\left(1-\gamma^{5}\right)
$$

Discovery and Completion of the 3rd Generation

v_{e}	v_{μ}	v_{τ}
e	μ	τ

- First indications of the third generation came from the discovery of the τ in 1975 (Nobel Prize 1995)
- The bottom quark (third generation quark) 1977
- Top quark in 1994
- v_{τ} in 2000

u	c	t
d	s	b

- Experiments (BaBar/BELLE) confirm Kobayashi and Maskawa's theory of CP violation
- Nobel Prize 2008 with Nambu

The Weak Neutral Current

- The weak neutral current is mediated by the Z boson ($\mathrm{Mz}=91 \mathrm{GeV} / \mathrm{c}^{2}$)
- It also shows the parity-violating structure of having both vector and axial-vector couplings
- However, it is a bit more complicated than the case of the W (weak charged current)
- The vector and axial vector components depend on the type of particle
- $\sin ^{2} \theta w=0.23126 \pm 0.00005$

	CV	CA
$v_{e} v_{\mu} v_{\tau}$	$1 / 2$	$1 / 2$
$e \mu \tau$	$-1 / 2+2 \sin ^{2} \theta_{W}$	$-1 / 2$
$u c t$	$1 / 2-4 / 3 \sin ^{2} \theta_{W}$	$1 / 2$
$d s b$	$-1 / 2+2 / 3 \sin ^{2} \theta_{W}$	$-1 / 2$

v_{e}	v_{μ}	v_{τ}
e	μ	τ
u	c	t
d	s	b

Z vs. γ

- Note that (almost) every interaction that can occur via the Z can happen via the photon
- At low energies ($\mathrm{E} \ll \mathrm{Mzc}^{2}$)

$$
\frac{-i\left(g_{\mu \nu}-q_{\mu} q_{\nu} / M_{Z}^{2} c^{2}\right)}{q^{2}-M_{Z}^{2} c^{2}} \Rightarrow \frac{i g_{\mu \nu}}{M_{Z}^{2} c^{2}}
$$

- Z propagator suppressed by Z mass
- EM interaction masks weak interaction
- The exception is the neutrino
- No electric charge, no EM interaction

Observation:

- Intense anti neutrino beam produced
- Scattering of atomic electron out of nowhere observed

Z production in $\mathrm{e}^{+}+\mathrm{e}^{-}$collisions

- $\mathrm{f}=\mathrm{e}, \mu, \mathrm{t}, \mathrm{q}$

Next Time

- Today:
- "helicity" suppression for weak decays
- "mixing" for quarks:
- Cabibbo angle in $2 x 2$ quark model
- CKM matrix for $3 x 3$
- weak neutral curent
- Please have a look at 9.7 on electroweak unification

