Weak Interaction of Hadrons and Neutral Current

H. A. Tanaka

Midterm:

- Replace the midterm grade with final grade is higher
 - i.e. if final grade > midterm grade, final is worth 60% of your grade.
 - otherwise, midterm is 20%, final is 40% (as before).

So far:

- Examined the weak charged current interaction of leptons (muon decay, etc.)
- We saw how the coupling includes a vector and axial-vector piece
 - parity violation is built into the weak interaction
- From a calculation standpoint, the new element is g5:
 - we learned how to evaluate traces with g5
- Now we move on to quarks. Two issues arise:
 - Quarks are in bound states that we don't know how to describe
 - we'll need to make some guesses/ansatz
 - Quarks can transition between "generations"
 - Leptons always stay within their generation

Pion Decay:

Lepton fermion leg

$$\left[\bar{u}_3 \frac{-ig_w}{2\sqrt{2}} \gamma^\mu (1-\gamma^5) v_2\right]$$

Quark Fermion leg

$$\left[\bar{v}_b \frac{-ig_w}{2\sqrt{2}}\gamma^\nu (1-\gamma^5)u_a\right]$$

$$\left[\bar{v}_b \frac{-ig_w}{2\sqrt{2}} \gamma^{\nu} (1-\gamma^5) u_a\right] \Rightarrow F^{\nu} = f_{\pi} p^{\nu}$$

Propagator

$$\int \frac{1}{(2\pi)^4} d^4 q = \frac{ig_{\mu\nu}}{M_W^2 c^2}$$

$$\mathcal{M} = \frac{g_W^2}{8M_W^2 c^2} \left[\bar{u}_3 \gamma^\mu (1 - \gamma^5) v_2 \right] f_\pi p_\mu$$

Summing over spins:

$$\mathcal{MM}^{*} = \left(\frac{g^{2}}{8M_{W}^{2}c^{2}}\right)^{2} \left[\bar{u}_{3}\gamma^{\mu}(1-\gamma^{5})v_{2}\right] \left[\bar{u}_{3}\gamma^{\nu}(1-\gamma^{5})v_{2}\right]^{*} f_{\pi}^{2}p_{\mu}p_{\nu}$$
$$\sum_{b \text{ crime}} \left[\bar{u}(a)\Gamma_{1}u(b)\right] \left[\bar{u}(a)\bar{\Gamma}_{2}u(b)\right]^{*} = \operatorname{Tr}\left[\Gamma_{1}(\not p_{b}+m_{b}c)\bar{\Gamma}_{2}(\not p_{a}+m_{a}c)\right]$$

a, b spins

$$\langle |\mathcal{M}|^2 \rangle = \frac{g_W^4}{64M_W^4 c^4} f_\pi^2 p_\mu p_\nu$$

Tr $\left[\gamma^\mu (1 - \gamma^5) (\not p_2) \gamma^\nu (1 - \gamma^5) (\not p_3 + m_l c) \right]$

• We've done this trace already:

$$\mathrm{Tr} \Rightarrow 8 \times \left[p_2^{\mu} p_3^{\nu} + p_2^{\nu} p_3^{\mu} - g^{\mu\nu} p_2 \cdot p_3 - i \epsilon^{\mu\nu\lambda\sigma} p_{2\lambda} p_{3\sigma} \right]$$

• So:

$$\langle |\mathcal{M}|^2 \rangle = \frac{f_\pi^2 g_W^4}{8M_W^4 c^4} \left[2 \times (p \cdot p_2)(p \cdot p_3) - p^2 (p_2 \cdot p_3) \right]$$

Decay Rate:

$$\langle |\mathcal{M}|^2 \rangle = \frac{f_\pi^2 g_W^4}{8M_W^4 c^4} \left[2 \times (p \cdot p_2)(p \cdot p_3) - p^2 (p_2 \cdot p_3) \right]$$

- Going into the rest frame of the decay, we can work out the kinematics:
 - Recall that "2" is the outgoing neutrino which we take to be massless

$$p = p_2 + p_3$$

$$p \cdot p_2 = (p_2 + p_3) \cdot p_2 = p_2 \cdot p_3 \qquad p \cdot p_3 = (p_2 + p_3) \cdot p_3 = p_2 \cdot p_3 + m_l^2 c^2$$

$$p^2 = p_2^2 + p_3^2 + 2p_2 \cdot p_3 \qquad 2p_2 \cdot p_3 = m_\pi^2 c^2 - m_l^2 c^2$$

$$\langle |\mathcal{M}|^2 \rangle = \frac{f_\pi^2 g_W^4}{16M_W^4 c^4} m_l^2 (m_\pi^2 - m_l^2)$$

$$\Gamma = \frac{|\mathbf{p}_2|}{8\pi\hbar m_\pi^2 c} \langle |\mathcal{M}|^2 \rangle \qquad |\mathbf{p}_2| = \frac{c}{2m_\pi} (m_\pi^2 - m_l^2)$$

$$\Gamma = A \times m_l^2 (m_\pi^2 - m_l^2)^2$$

Now Consider the $l=\mu/e$

$$\Gamma_l = A \times m_l^2 (m_\pi^2 - m_l^2)^2$$

• We take the ratio of the decay rates:

$$\frac{\Gamma_e}{\Gamma_\mu} = \frac{m_e^2 (m_\pi^2 - m_e^2)^2}{m_\mu^2 (m_\pi^2 - m_\mu^2)^2} = 1.28 \times 10^{-4}$$

$$\pi \to e + \nu_e$$
$$\pi^- \to \mu^- + \bar{\nu}_\mu$$

- using the known masses of $e/\mu/\pi$
- Experiments can measure this and obtain (1.230±0.004) x10⁻⁴
- The PIENU experiment at TRIUMF will use this to test the universality of the lepton coupling to the W.

$$\begin{split} m_e &= 0.511 \; MeV/c^2 \\ m_\mu &= 105.66 \; MeV/c^2 \\ m_\pi &= 139.57 \; MeV/c^2 \end{split}$$

The PIENU Experiment at TRIUMF

Improved Measurement of the $\pi \rightarrow e\nu$ Branching Ratio

A. Aguilar-Arevalo,¹ M. Aoki,² M. Blecher,³ D. I. Britton,⁴ D. A. Bryman,⁵ D. vom Bruch,⁵ S. Chen,⁶ J. Comfort,⁷ M. Ding,⁶ L. Doria,⁸ S. Cuen-Rochin,⁵ P. Gumplinger,⁸ A. Hussein,⁹ Y. Igarashi,¹⁰ S. Ito,² S. H. Kettell,¹¹ L. Kurchaninov,⁸ L. S. Littenberg,¹¹ C. Malbrunot,^{5,*} R. E. Mischke,⁸ T. Numao,⁸ D. Protopopescu,⁴ A. Sher,⁸ T. Sullivan,⁵ D. Vavilov,⁸ and K. Yamada²

(PIENU Collaboration)

¹Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Mexico, Distrito Federal 04510 México
 ²Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
 ³Physics Department, Virginia Tech, Blacksburg, Virginia 24061, USA
 ⁴Physics Department, University of Glasgow, Glasgow G12 8QQ, United Kingdom
 ⁵Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
 ⁶Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China
 ⁷Physics Department, Arizona State University, Tempe, Arizona 85287, USA
 ⁸TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
 ⁹University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
 ¹⁰KEK, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801, Japan
 ¹¹Brookhaven National Laboratory, Upton, New York 11973-5000, USA (Received 8 June 2015; published 13 August 2015)

A new measurement of the branching ratio $R_{e/\mu} = \Gamma(\pi^+ \to e^+\nu + \pi^+ \to e^+\nu\gamma)/\Gamma(\pi^+ \to \mu^+\nu + \pi^+ \to \mu^+\nu\gamma)$ resulted in $R_{e/\mu}^{exp} = [1.2344 \pm 0.0023(\text{stat}) \pm 0.0019(\text{syst})] \times 10^{-4}$. This is in agreement with the standard model prediction and improves the test of electron-muon universality to the level of 0.1%.

Kaons:

$$\frac{\Gamma_e}{\Gamma_\mu} = \frac{m_e^2 (m_K^2 - m_e^2)}{m_e^2 (m_K^2 - m_\mu^2)} = 2.57 \times 10^{-5}$$

- Branching fractions:
 - $K^+ \rightarrow e^+ + v_e = (1.582 \pm 0.007) \times 10^{-5}$
 - $K^+ \rightarrow \mu^+ + \nu_{\mu} = 0.6356 \pm 0.0011$
 - Ratio = 2.49×10^{-5}
- Can also apply to D⁺ and B⁺, but:
 - electronic decay mode for D⁺ not observed yet (BR<8.8x10⁻⁶)
 - electronic/muonic decay mode for B⁺ not observed yet (BR<10⁻⁶)

Weak interactions of leptons

- We have used the following Feynman rule for the vertex of a leptonic weak interaction
- This had two properties:
 - the neutrino and lepton must "match"
 - the coupling is the same for each lepton type
- We say that the interaction is "diagonal" with respect to lepton flavor and that the coupling is "universal"

Weak Interaction of the quarks

- We'll step back several decades to 1963 when we only knew of three quarks (sort of)
- People noticed that decays of strange particles to non-strange particles were "slower" than expected

Cabibbo Angle:

• Experimentally, the ratio is more like 1.3, indicating that something is missing from the above analysis.

 $\cos \theta_C \frac{-ig_w}{2\sqrt{2}} \gamma^{\mu} (1-\gamma^5)$ • Cabibbo introduced the "Cabibbo angle" θ_C

- $u \leftrightarrow s$ transitions have a factor sin θ_C in the vertex
- $u \leftrightarrow d$ transitions have a factor $\cos \theta_C$ in the vertex
- Experimentally, $\theta_C \sim 13.15^{\circ}$
- $\sin \theta_C \frac{-ig_w}{2\sqrt{2}} \gamma^\mu (1-\gamma^5)$ With this, Cabibbo was able to relate a host of decay of strange and non-strange particles
 - Overall, it shows that *u*↔*s* are disfavored while are *u*↔*d* are favored

A Problem:

- Introduce 4th quark (charm) with coupling -sin θ_C
- Cancels contribution from u quark
- Formalizes idea of "generations"
 - Mass eigenstates "rotated" slightly from "flavour" (or weak) eigenstates

The "November" Revolution

- 1974: Discovery of the J/ ψ meson at BNL, SLAC
 - e⁺e⁻ and qq collisions produce a cc state
 - Confirmation of GIM model

1974 Nobel Prize in Physics

CP Violation and the 3rd generation

- Prior to the discovery of charm, Kobayashi and Maskawa contemplated CP violation (discovered in 1964)
- One way to introduce CP violation is by having a complex phase
 - This will switch sign from quark \leftrightarrow antiquark, changing the amplitude
 - Found no way to introduce a complex phase with 2 generations
 - Concluded that three generations are needed to have complex phase

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

• Cabibbo matrix incorporated as upper 2x2 part of 3x3 matrix.

$$|U_{CKM}| \sim \left(\begin{array}{ccc} 0.9738 & 0.2272 & 0.0040\\ 0.2271 & 0.9730 & 0.0422\\ 0.0081 & 0.0416 & 0.9991 \end{array}\right)$$

How it works:

- A factor of V_{ab} is applied for $a \rightarrow b$ transition:
 - e.g. V_{ud} refers to $u \rightarrow d + W^{\scriptscriptstyle +}$
- A factor of $V_{ab}{}^{*}$ is applied for $b{\rightarrow}a$ transition
 - e.g. V_{ud}^* for $d \rightarrow u + W^-$
- (I think the book has it reversed)

Discovery and Completion of the 3rd Generation

 \mathcal{C}

S

 \mathcal{U}

d

t

b

•	First indications of the third generation came from
	the discovery of the τ in 1975 (Nobel Prize 1995)

- The bottom quark (third generation quark) 1977
- Top quark in 1994
- *v*_τ in 2000
- Experiments (BaBar/BELLE) confirm Kobayashi and Maskawa's theory of CP violation
 - Nobel Prize 2008 with Nambu

The Weak Neutral Current

	Cv	CA
$v_e v_\mu v_\tau$	1/2	1/2
<i>e</i> μ τ	$-1/2 + 2 \sin^2 \theta_W$	-1/2
u c t	$1/2 - 4/3 \sin^2 \theta_W$	1/2
dsb	$-1/2 + 2/3 \sin^2 \theta_W$	-1/2

- The weak neutral current is mediated by the Z boson (M_Z=91 GeV/c²)
- It also shows the parity-violating structure of having both vector and axial-vector couplings
- However, it is a bit more complicated than the case of the W (weak charged current)
 - The vector and axial vector components depend on the type of particle

•
$$\sin^2 \theta_W = 0.23126 \pm 0.00005$$

Ζvs.γ

- Note that (almost) every interaction that can occur via the Z can happen via the photon
- At low energies (E << M_Zc²)

$$\frac{-i(g_{\mu\nu} - q_{\mu}q_{\nu}/M_Z^2 c^2)}{q^2 - M_Z^2 c^2} \Rightarrow \frac{ig_{\mu\nu}}{M_Z^2 c^2}$$

- Z propagator suppressed by Z mass
- EM interaction masks weak interaction
- The exception is the neutrino
 - No electric charge, no EM interaction

Observation:

- Intense anti neutrino beam produced
 - Scattering of atomic electron out of nowhere observed

Z production in $e^+ + e^-$ collisions

Next Time

- Today:
 - "helicity" suppression for weak decays
 - "mixing" for quarks:
 - Cabibbo angle in 2x2 quark model
 - CKM matrix for 3x3
 - weak neutral curent
- Please have a look at 9.7 on electroweak unification