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Midterm

• Next Thursday in class

• Covers Chapters 1-6


• Basic interaction properties

• drawing Feynman diagrams for a process

• which processes are allowed, favoured, etc. (interaction, phase space, 

CKM matrix element, etc.)

• Special relativity, relativistic kinematics

• Isospin, Parity, CP violation

• Basic phase space.


• A formula sheet will be provided with relevant information

• You can also bring a scientific calculator.



Other

• Final examination:


• Monday, 21 December 1400-1700.


• SS 2118 (Sidney Smith Hall, 100 St. George Street)


• Problem Set 3 due today at 1700 in drop box.



e++ e-→τ+ + τ-

• Calculate the spin averaged cross section for this process in the CM frame 
as a function of the incoming electron/positron energy.


• Let’s call the  electron mass m, τ mass M

• i.e. don’t assume the particles are massless 

• τ is a spin 1/2 fermion just like an electron; Feynman rules are the same 

as an electron, just with a different mass
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DIO
• Consider the process e+e- → l+l- where l is a muon or tau


• Assume energies are high enough that me/mμ ~ 0.

• Step I: Write down the Feynman diagram(s) for this process, labeling the 

momenta of the particles (incoming, outgoing and virtual)

• Step II: Use the Feynman rules to write down an expression for the 

amplitude.

• Step III: Sum over the spins of both the initial-state and final-state particles 

to obtain a expression for |M|2 in terms of the traces of γ matrices.

• Note


• Step IV: Use the trace relations to obtain |M|2 in terms of the dot products 
of the four-momenta and the masses of the particles


• Step V: Assume that you are in the CM frame with the incoming e+e- 

coming along the z axis. Express |M|2 in terms of the energy of the e+e- , 
the masses of the particles, and and the angle of the outgoing l- relative to 
the e-.
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Step I/II: The Feynman Diagram and rules 
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Step III: Summing over spins:

• To get |M|2 we need to take the complex conjugate of the M:
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• Expand the trace expressions


• An apply the trace relations


• Carry out the contraction between the Lorentz indices:
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Step IV (continued)

• Put it all together:


• Since we are averaging over the initial spins, we need to divide by 4:
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Step V: The Kinematics:
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Working out each term:

(p1 · p3) = E2/c2 � pp� cos �

(p1 · p4) = E2/c2 + pp� cos �

(p2 · p3) = E2/c2 + pp� cos �

(p2 · p4) = E2/c2 � pp� cos �
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Endgame:
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Electron/Positron Machines around the World

• In the US:

• SLAC (SPEAR, PEP, PEP-II)

• CESR 


• Older machines “retire” to become 
synchrotron radiation sources



Elsewhere:

• Left: KEK-B ring at KEK (Tsukuba, 
Japan)


• Top: BES spectrometer (Beijing, China)

• Other machines:


• PETRA at DESY (Hamburg, 
Germany)




Detectors

• Most detectors share a similar “cylindrical onion” design

• Inner tracking region (silicon, drift chambers)

• Electromagnetic calorimetry (measure and identify electron/photon 

energy)

• Muon detector: identify muons by their penetration through lots of 

material




Events at BaBar

• e++e- →e++e- event at BaBar (Bhabha scattering)

• Note “straightness” of tracks:

• Large deposition in electromagnetic calorimeter

• e++e- →µ++µ- would look similar, but without large 

energy deposition in the calorimeter


• “Hadronic” event at BaBar

• Particles like b, c quarks 


produced which initiate a

decay chain


• “Full reconstruction” 

 sometimes possible



Now some physics:
• Wed derived the amplitude for e+e- → l+l-  


• m = electron mass, M = lepton mass. Let’s ignore the electron mass (E 
large enough that (mc2/E) is very small:


• Recalling our cross section formula:


• Integrate over the θ, ϕ to obtain the total cross section:
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Ratio of cross sections:
• e++e- →µ++µ- has a very distinct signature in the detector

• “Normalize” e++e- →τ++τ- in the detector by taking the ratio:


• Note: numerator is imaginary when E < Mτc2: this is a threshold requirement

step E, count τ++τ- and µ++µ- events

•Ratio is effectively Rτµ


•Energy Rτµ(E) depends on the spin of the τ:

•If the particle were a scalar or vector, it would 

have a different E-dependence

•Measures τ mass:

W. Bacino et al.
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Angular Distribution
• From our amplitude expression:


• if we go to even higher energies E >> Mc2, we obtain the simple form:


• Recalling our cross section expression
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Fig. 2. The measured tau pair differential cross section at W 
-34.5 GeV. The dashed line has the form (l+cos20) expected 
from lowest order QED, normalised to the data and the full line 
is the result of the fit 

rections to the weak current are ~0.006 [19] and 

are not applied. The corrected asymmetry  was found 

to be Aalr(iCOS 0[ < 1) = -0 .048  _+0.043. 

(b) The angular distribution was fitted using (3) and 

the asymmetry,  A, for the entire range determined 

from A(lcosOl<l)=~bl .  The results of the fit are 

shown in Fig. 2 by the solid curve. The asymmetry  

determined was A(lcos 0] < 1)= -0 .049  + 0  053 +0'013 - -   9 - 0 . 0 1 2 "  

This result is consistent with the GWS prediction of  

- 0 .092  (sin 2 0w=0.228 [20], M~ = 9 3  GeV [21]). 

The asymmetry was used to calculate g; using the 

expression derived from (2) i.e., 

W 2 
A =  2.7 - 4  ~ -  9 10  - g . g . .  

(1 - W2/M 2) 

where we assume M ~ = 9 3 G e V  and g ~ = - 0 . 5 1 4  

_+0.058 [22]. The value obtained, g~=-0 .26_+0 .34 ,  

is consistent with the GWS model and with other 

measurements  [1, 14]. 

C o n c l u s i o n s  

We have used the distinctive topology of  tau pair 

final states to select event samples of the 1 -  3 and 3 

- 3  topologies and have used the particle identifi- 

cation properties of the T A S S O  detector to select a 

sample of 1 - 1  topology  events. N o  events of the 1 

- 5  topology were found, resulting in an upper limit 

for the 5-track topological  branching fraction, Bs, 

where the r decays to 5 stable charged particles of  

B5<0.007 ( 9 5 ~  CL). In the 3-track sample the ~z ~ 

composi t ion was found to be F = B ( ~ - ~ T r  ~+~-v) /  

(B(~ ~ n-Tr+ rc-v)+ B(v ~ rc 7r+ Tz 7r~176 

under the assumption that B(r--- , rc-rc+rc rc~176 

=0.  The event samples have been used to calculate 

the topological  branching fractions B 1 and B 3. Assum- 

ing B 5 = 0  we find B I =0.847_+0.011 (stat)+_~176 

giving B 3 = l  - B  1 = 0.153 _+ 0.011 (stat)+ ~176 ~(syst) 

confirming recent results [1]. The total  product ion  

cross section has been found to agree with that 

expected from Q E D  for pointlike spin 1/2 particles, 

leading to cut off parameters  of A+ >161 GeV and 

A > 169 GeV (95 % CL). The differential cross section 

for tau pair p roduct ion  has been used to determine 

the forward-backward asymmetry  A. We find 

A(lcos 0l < 1)= - 0 . 0 4 9  + o  o ~ +  o.ol 3 v . . . .  - - 0 . 0 1 2 '  
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A p p e n d i x  A .  E v e n t  S e l e c t i o n  R e q u i r e m e n t s  

In this appendix we describe the selection criteria in 

searching for the various T topological  samples. 

Topology (1 - 1) 

To be considered as a candidate  ( 1 - 1 )  event the 

following cuts had to be satisfied: 

( la) exactly two reconstructed charged tracks 

should be seen in the event, where each track satis- 

fied: (i) d0<0 .4  cm, (ii)Izl < 10.0 cm, (iii) - 3  n s < t  . . . .  

-- tpred<2 ns and (iv) p > 2  GeV/c, where do is the 

radial distance of the track from the beam line at its 

point  of closest approach  (the resolution of the mea- 

sured posit ion of the beam line, determined from 

Bhabha  scattering events, was 0.1 m m  and the do 

resolution was 0.15 mm), z is the distance along the 

beam line from the interaction point  to the point  at 

which do was measured, t . . . .  is the measured time of 

flight to the inner time-of-flight counters, fpred that  

calculated using the measured path  length and as- 

suming the particle to be travelling at the velocity of 

light, and p is t h e  measured track momentum,  

(lb) the difference in the measured time of  flight 

of  the two tracks, tl and t2, satisfied It1--t2l <5 .0  ns, 

(lc) the event satisfied the coplanari ty  trigger, 

which required that  at least two tracks back to back 

within 27 ~ in the plane perpendicular  to the beam 

line, 

( ld) the summed charge satisfied ~ Q = 0 ,  

(le) the opening angle, ~12, between the two 

tracks satisfied 120 ~ < e12 < 178 ~ 

(lf) each track was projected to enter the M U C H  

and also the L A B C  or H A S C  acceptance, 
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Cross Section at High Energy:

• If we use our same approximation: Mc2<<E


• becomes:

526 M. Althoff et al.: Production and Decay of Tau Leptons 

c 

t ; ,  

+?, 

t3  

0+6 

0.5 

0.4 

03 

02 

0.1 

0 
10.0 

l l t l t l l l [ + l l t l l t l  

2 a l  + ~ I i z i i I f t i + I i i i i 

20.0 30+0 40.0 50.0 

W (GeV) 

2 . 0  I I [ I I [ I [ I I I [ I I I I 

e+e---,,L+~- 

15 

A- 

0.5 

0 -b l  I I I I t I I I + I I I I ' I I I 

1 O0 20.0 30.0 40.0 50.0 

W (GeV) 

Fig. I. a Measured tau pair cross section (nb). The solid curve 

shows the lowest order QED prediction, b Normalised tau pair 

cross section, a~+/crQ~D. The 95~o confidence level limits on A• 

(dashed curve) are shown, where the overall normalisation was 

allowed to vary within the systematic error 

and 46 events of this category at the three energies 

respectively. Event selection, background subtrac- 

tion, radiative corrections, acceptance corrections 

and trigger efficiencies were calculated as described 

above. Using our measured values of BIBs above o-~ 

is determined to be 0.47+0.06, 0.18+-0.03 and 0.049 

+-0.008 nb respectively. The results shown in Fig. 1 

are in good agreement with QED and with other 

recent measurements [14]. 

In a previous publication [15] BtB3=0.19 was 

used together with the then existing z decay branch- 

ing fractions. In this analysis the use of all decay 

categories and improved knowledge of r decays in- 

volving 7r~ allows a better calculation of the cross 

section. 

The W-dependence of the cross section was used 

to determine the z cut off parameters, A+ and A , 

defined by 

o-r, = o-QEDE 1 T- W 2 / ( W  2 - -  A 2 )] 2 

Fits to the cross sections, allowing the overall nor- 

malisation to vary within the systematic error, yield- 

ed the following bounds at 95% confidence level, 

A+ > 161 GeV and A_ > 169 GeV as shown in Fig. 1. 

(v)  Asymmetry Measurements at 34.5 GeV 

and z Neutral Current CouplinGs 

The tau pair events were used to measure the weak 

neutral current couplings of the tau lepton. Contri- 

butions from electromagnetic and weak neutral cur- 

rents lead to a differential cross section for z+z - 

production of the form [16, 17] : 

do- ~X 2 
dr2 - 4 W  2 {(1 +cos  2 8)(1 + 2g~g; Re(z) 

+g~ )(g~ +g;2)lz12) 
+4cos0(gag" e + e  9 2 + Re(x)+2gvgvgag, IzI )} (2) 

GeM 2 W 2 
where Z=21/~Tzc . (W2_MZ+iM~F~ ) is the weak 

neutral current pole term with mass Mz and width 

F~, 8 is the scattering angle measured between the 

incoming e + and outgoing z + and gv and ga are the 

vector and axial vector coupling constants. The pres- 

ence of a weak neutral current can produce chang- 

es in the cross section (~g~g~) and introduce a for- 

ward-backward asymmetry (~g~g]). The most prom- 

inent effect at our energies is the forward-back- 

ward asymmetry. 

The differential cross section of (2) has the gener- 

al form : 

do- 
dO = b~ + bl cos 0 + cos 2 0) (3) 

where we define 8 by cosS=e+ . (v+-v - ) / l e+ l l~  + 

- v - l ,  with e + being the momentum vector of the 

incident positron and v + and v-  being the summed 

momentum vectors of the outgoing charged decay 

products of the tau. Figure 2 shows the differential 

cross section at W=34.5 GeV after applying cor- 

rections for acceptances, QED radiative effects [18] 

and backgrounds. The dashed curve corresponds to 

the 1 + cos a 8 form expected from lowest order QED. 

To quantify any forward-backward asymmetry two 

approaches have been used: 

(a) The direct asymmetry was determined by count- 

ing the number of events with 0.8 > cos 8 > 0 (F) and 

0 >  c o s 0 >  -0 .8  (B) and forming 

F - B  
Amr(lCOS 81 < 0.8) -- 

F + B  

Higher order QED processes [17] lead to a radiative 

correction to Adir of 0.007+0.005, higher order cot- 
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