$$
\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \tau^{+}+\tau^{-}
$$

H. A. Tanaka

## Midterm

- Next Thursday in class
- Covers Chapters 1-6
- Basic interaction properties
- drawing Feynman diagrams for a process
- which processes are allowed, favoured, etc. (interaction, phase space, CKM matrix element, etc.)
- Special relativity, relativistic kinematics
- Isospin, Parity, CP violation
- Basic phase space.
- A formula sheet will be provided with relevant information
- You can also bring a scientific calculator.


## Other

- Final examination:
- Monday, 21 December 1400-1700.
- SS 2118 (Sidney Smith Hall, 100 St. George Street)
- Problem Set 3 due today at 1700 in drop box.


## $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \tau^{+}+\tau^{-}$

- Calculate the spin averaged cross section for this process in the CM frame as a function of the incoming electron/positron energy.
- Let's call the electron mass m, $\tau$ mass M
- i.e. don't assume the particles are massless
- $\tau$ is a spin $1 / 2$ fermion just like an electron; Feynman rules are the same as an electron, just with a different mass

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=g_{e}^{4}\left\{1+\left(1-\frac{m^{2} c^{4}}{E^{2}}\right)\left(1-\frac{M^{2} c^{4}}{E^{2}}\right) \cos ^{2} \theta+\frac{m^{2} c^{4}}{E^{2}}+\frac{M^{2} c^{4}}{E^{2}}\right\}
$$

## DIO

- Consider the process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow l^{+} l^{-}$where $l$ is a muon or tau
- Assume energies are high enough that $\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mu} \sim 0$.
- Step I: Write down the Feynman diagram(s) for this process, labeling the momenta of the particles (incoming, outgoing and virtual)
- Step II: Use the Feynman rules to write down an expression for the amplitude.
- Step III: Sum over the spins of both the initial-state and final-state particles to obtain a expression for $|\mathrm{M}|^{2}$ in terms of the traces of $\gamma$ matrices.
- Note $\bar{\gamma}^{\mu}=\gamma^{0} \gamma^{\mu \dagger} \gamma^{0}=\gamma^{\mu}$
- Step IV: Use the trace relations to obtain $|\mathrm{M}|^{2}$ in terms of the dot products of the four-momenta and the masses of the particles
- Step V: Assume that you are in the CM frame with the incoming $e^{+} e^{-}$ coming along the $z$ axis. Express $|\mathrm{M}|^{2}$ in terms of the energy of the $\mathrm{e}^{+} \mathrm{e}^{-}$, the masses of the particles, and and the angle of the outgoing $l^{-}$relative to the $\mathrm{e}^{-}$


## Step I/II: The Feynman Diagram and rules



$$
\begin{gathered}
\frac{1}{(2 \pi)^{4}} \int d^{4} q \frac{-i g_{\mu \nu}}{q^{2}} \\
\bar{u}(3) i g_{e} \gamma^{\mu} v(4)(2 \pi)^{4} \delta^{4}\left(q-p_{3}-p_{4}\right) \\
\bar{v}(2) i g_{e} \gamma^{\nu} u(1)(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-q\right) \\
{\left[\bar{u}(3) \gamma^{\mu} v(4)\right] g_{\mu \nu}\left[\bar{v}(2) \gamma^{\nu} u(1)\right]} \\
i(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \times \frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}} \\
\mathcal{M}=-\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{v}(2) \gamma_{\mu} u(1)\right]
\end{gathered}
$$

## Step III: Summing over spins:

- To get $|\mathrm{M}|^{2}$ we need to take the complex conjugate of the M :

$$
\begin{aligned}
\mathcal{M}= & -\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{v}(2) \gamma_{\mu} u(1)\right] \\
\mathcal{M}^{*}= & -\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\nu} v(4)\right]^{*}\left[\bar{v}(2) \gamma_{\nu} u(1)\right]^{*} \\
|\mathcal{M}|^{2}= & \frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{u}(3) \gamma^{\nu} v(4)\right]^{*}\left[\bar{v}(2) \gamma_{\mu} u(1)\right]\left[\bar{v}(2) \gamma_{\nu} u(1)\right]^{*} \\
& \sum_{\text {spins }}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{u}(3) \gamma^{\nu} v(4)\right]^{*}=\operatorname{Tr}\left[\left(\gamma^{\mu}\left(\not p_{4}-M c\right) \gamma^{\nu}\left(\not p_{3}+M c\right)\right]\right.
\end{aligned}
$$

$$
\sum_{\text {spins }}\left[\bar{v}(2) \gamma^{\mu} u(1)\right]\left[\bar{v}(2) \gamma^{\nu} u(1)\right]^{*}=\operatorname{Tr}\left[\gamma_{\mu}\left(\not p_{1}+m c\right) \gamma_{\nu}\left(\not p_{2}-m c\right)\right]
$$

$$
\sum_{\text {spins }}|\mathcal{M}|^{2}=\frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}} \operatorname{Tr}\left[\gamma^{\mu}\left(\not p_{4}-M c\right) \gamma^{\nu}\left(\not p_{3}+M c\right)\right] \operatorname{Tr}\left[\gamma_{\mu}\left(\not p_{1}+m c\right) \gamma_{\nu}\left(\not p_{2}-m c\right)\right]
$$

## Step IV:

## - Expand the trace expressions

$$
\begin{aligned}
& \operatorname{Tr}\left[\gamma^{\mu}\left(\not p_{4}-M c\right) \gamma^{\nu}\left(\not p_{3}+M c\right)\right]=\operatorname{Tr}\left[\gamma^{\mu} \not p_{4} \gamma^{\nu} \not p_{3}-M^{2} c^{2} \gamma^{\mu} \gamma^{\nu}\right] \\
& \operatorname{Tr}\left[\gamma_{\mu}\left(\not{ }_{1}-m c\right) \gamma_{\nu}\left(\not p_{2}+m c\right)\right]=\operatorname{Tr}\left[\gamma_{\mu} \not p_{1} \gamma_{\nu} \not p_{2}-m^{2} c^{2} \gamma^{\mu} \gamma^{\nu}\right]
\end{aligned}
$$

- An apply the trace relations

$$
\begin{aligned}
& \operatorname{Tr}\left[\gamma^{\mu} \not p_{4} \gamma^{\nu} \not p_{3}-M^{2} c^{2} \gamma^{\mu} \gamma^{\nu}\right]=4 \times\left[p_{4}^{\mu} p_{3}^{\nu}+p_{3}^{\mu} p_{4}^{\nu}-g^{\mu \nu}\left(p_{4} \cdot p_{3}\right)-M^{2} c^{2} g^{\mu \nu}\right] \\
& \operatorname{Tr}\left[\gamma_{\mu} \not p_{1} \gamma_{\nu} \not p_{2}-m^{2} c^{2} \gamma^{\mu} \gamma^{\nu}\right]=4 \times\left[p_{1 \mu} p_{2 \nu}+p_{2 \mu} p_{1 \nu}-\left(p_{1} \cdot p_{2}\right) g_{\mu \nu}-m^{2} c^{2} g_{\mu \nu}\right]
\end{aligned}
$$

- Carry out the contraction between the Lorentz indices: $16 \times$

$$
\begin{array}{r}
\left(p_{4} \cdot p_{1}\right)\left(p_{3} \cdot p_{2}\right)+\left(p_{4} \cdot p_{2}\right)\left(p_{3} \cdot p_{1}\right)-\left(p_{1} \cdot p_{2}\right)\left(p_{4} \cdot p_{3}\right)-m^{2} c^{2}\left(p_{4} \cdot p_{3}\right) \\
\left(p_{3} \cdot p_{1}\right)\left(p_{4} \cdot p_{2}\right)+\left(p_{3} \cdot p_{2}\right)\left(p_{4} \cdot p_{1}\right)-\left(p_{1} \cdot p_{2}\right)\left(p_{4} \cdot p_{3}\right)-m^{2} c^{2}\left(p_{4} \cdot p_{3}\right) \\
-\left(p_{1} \cdot p_{2}\right)\left(p_{4} \cdot p_{3}\right)-\left(p_{2} \cdot p_{1}\right)\left(p_{4} \cdot p_{3}\right)+4\left(p_{4} \cdot p_{3}\right)\left(p_{1} \cdot p_{2}\right)+4 m^{2} c^{2}\left(p_{3} \cdot p_{4}\right) \\
-M^{2} c^{2}\left[\left(p_{1} \cdot p_{2}\right)+\left(p_{2} \cdot p_{1}\right)-4\left(p_{1} \cdot p_{2}\right)-4 m^{2} c^{2}\right] \\
16 \times\left[2\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)+2\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)+2 m^{2} c^{2}\left(p_{3} \cdot p_{4}\right)\right. \\
\left.+2 M^{2} c^{2}\left(p_{1} \cdot p_{2}\right)+4 m^{2} c^{2} M^{2} c^{2}\right]
\end{array}
$$

## Step IV (continued)

- Put it all together:
$\sum_{\text {spins }}|\mathcal{M}|^{2}=\frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}} \operatorname{Tr}\left[\gamma^{\mu}\left(\not p_{4}-M c\right) \gamma^{\nu}\left(\not p_{3}+M c\right)\right] \operatorname{Tr}\left[\gamma_{\mu}\left(\not p_{1}+m c\right) \gamma_{\nu}\left(\not p_{2}-m c\right)\right]$
$\sum_{\text {spins }}|\mathcal{M}|^{2}=\frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}} 32 \times\left[\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)+\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)+\right.$

$$
\left.m^{2} c^{2}\left(p_{3} \cdot p_{4}\right)+M^{2} c^{2}\left(p_{1} \cdot p_{2}\right)+2 m^{2} c^{2} M^{2} c^{2}\right]
$$

- Since we are averaging over the initial spins, we need to divide by 4:

$$
\begin{array}{r}
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}} 8 \times\left[\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)+\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)+\right. \\
\left.m^{2} c^{2}\left(p_{3} \cdot p_{4}\right)+M^{2} c^{2}\left(p_{1} \cdot p_{2}\right)+2 m^{2} c^{2} M^{2} c^{2}\right]
\end{array}
$$

## Step V: The Kinematics:

$$
\left.\begin{array}{l}
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}} 8 \times\left[\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)+\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)+\right. \\
\left.m^{2} c^{2}\left(p_{3} \cdot p_{4}\right)+M^{2} c^{2}\left(p_{1} \cdot p_{2}\right)+2 m^{2} c^{2} M^{2} c^{2}\right]
\end{array}\right\} \begin{aligned}
& p_{1}=(E / c, 0, p) \\
& p_{2}=(E / c, 0,-p) \\
& p_{3}=\left(E / c, p^{\prime} \sin \theta, p^{\prime} \cos \theta\right) \\
& p_{4}=\left(E / c,-p^{\prime} \sin \theta,-p^{\prime} \cos \theta\right) \\
& p=\sqrt{\mu^{-}} \begin{array}{l}
\mathrm{e}^{\prime}=\sqrt{E^{2} / c^{2}-m^{2} c^{4}}-m^{2} c^{2}
\end{array} \quad \begin{array}{l}
E^{2} / c^{2}-M^{2} c^{2}
\end{array} \\
& \left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=g_{e}^{4}\left[1+\left(\frac{m c^{2}}{E}\right)^{2}+\left(\frac{M c^{2}}{E}\right)^{2}+\left[1-\left(\frac{m c^{2}}{E}\right)^{2}\right]\left[1-\left(\frac{M c^{2}}{E}\right)^{2}\right] \cos ^{2} \theta\right]
\end{aligned}
$$

## Working out each term:

\[

\]

## Endgame:

$$
\begin{array}{rr}
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{g_{e}^{4}}{\left(4 E^{2} / c^{2}\right)^{2}} 8 \times\left[2(E / c)^{4}\right. & +2 p^{2} p^{\prime 2} \cos ^{2} \theta+m^{2} c^{2}\left(E^{2} / c^{2}+p^{\prime 2}\right) \\
& \left.+M^{2} c^{2}\left(E^{2} / c^{2}+p^{2}\right)+2 m^{2} c^{2} M^{2} c^{2}\right] \\
p^{2}=E^{2} / c^{2}-m^{2} c^{2} & p^{2} p^{\prime 2}=\left(\frac{E}{c}\right)^{4}\left(1-\frac{m^{2} c^{4}}{E^{2}}\right)\left(1-\frac{M^{2} c^{4}}{E^{2}}\right) \\
p^{\prime 2}=E^{2} / c^{2}-M^{2} c^{2} & m^{2} c^{2}\left(E^{2} / c^{2}+p^{\prime 2}\right)+m^{2} c^{2} M^{2} c^{2}=2 m^{2} E^{2} \\
M^{2} c^{2}\left(E^{2} / c^{2}+p^{2}\right)+m^{2} c^{2} M^{2} c^{2}=2 M^{2} E^{2}
\end{array}
$$

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{g_{e}^{4}}{\left(4 E^{2} / c^{2}\right)^{2}} 8 \times\left\{2\left(\frac{E}{c}\right)^{4}\left[1+\left(1-\frac{m^{2} c^{4}}{E^{2}}\right)\left(1-\frac{M^{2} c^{4}}{E^{2}}\right) \cos ^{2} \theta\right]+2 m^{2} E^{2}+2 M^{2} E^{2}\right\}
$$

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=g_{e}^{4}\left\{1+\left(1-\frac{m^{2} c^{4}}{E^{2}}\right)\left(1-\frac{M^{2} c^{4}}{E^{2}}\right) \cos ^{2} \theta+\frac{m^{2} c^{4}}{E^{2}}+\frac{M^{2} c^{4}}{E^{2}}\right\}
$$

## Electron/Positron Machines around the World



- In the US:
- SLAC (SPEAR, PEP, PEP-II)
- CESR
- Older machines "retire" to become synchrotron radiation sources


## Elsewhere:



- Left: KEK-B ring at KEK (Tsukuba, Japan)
- Top: BES spectrometer (Beijing, China)
- Other machines:
- PETRA at DESY (Hamburg, Germany)


## Detectors



- Most detectors share a similar "cylindrical onion" design
- Inner tracking region (silicon, drift chambers)
- Electromagnetic calorimetry (measure and identify electron/photon energy)
- Muon detector: identify muons by their penetration through lots of material


## Events at BaBar



- $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{e}^{+}+\mathrm{e}^{-}$event at BaBar (Bhabha scattering)
- Note "straightness" of tracks:
- Large deposition in electromagnetic calorimeter
- $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \mu^{+}+\mu^{-}$would look similar, but without large energy deposition in the calorimeter

- "Hadronic" event at BaBar
- Particles like b, c quarks produced which initiate a decay chain
- "Full reconstruction" sometimes possible



## Now some physics:

- Wed derived the amplitude for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow l^{+} l^{-}$
$\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=g_{e}^{4}\left[1+\left(\frac{m c^{2}}{E}\right)^{2}+\left(\frac{M c^{2}}{E}\right)^{2}+\left[1-\left(\frac{m c^{2}}{E}\right)^{2}\right]\left[1-\left(\frac{M c^{2}}{E}\right)^{2}\right] \cos ^{2} \theta\right]$
- $m=$ electron mass, $M=$ lepton mass. Let's ignore the electron mass ( $E$ large enough that $\left(\mathrm{mc}^{2} / \mathrm{E}\right)$ is very small:
$\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=g_{e}^{4}\left[1+\left(\frac{M c^{2}}{E}\right)^{2}+\left[1-\left(\frac{M c^{2}}{E}\right)^{2}\right] \cos ^{2} \theta\right]$
- Recalling our cross section formula:

$$
\frac{d \sigma}{d \cos \theta d \phi}=\left(\frac{\hbar c}{8 \pi}\right)^{2} \frac{\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle}{4 E^{2}} \frac{\left|p_{f}\right|}{\left|p_{i}\right|}
$$

- Integrate over the $\theta, \phi$ to obtain the total cross section:

$$
\sigma=\frac{\pi}{3}\left(\frac{\hbar c \alpha}{E}\right)^{2} \sqrt{1-\left(M c^{2} / E\right)^{2}}\left[1+\frac{1}{2}\left(\frac{M c^{2}}{E}\right)^{2}\right]
$$

## Ratio of cross sections:

- $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \mu^{+}+\mu^{-}$has a very distinct signature in the detector
- "Normalize" $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \tau^{+}+\tau^{-}$in the detector by taking the ratio:

$$
R_{\tau \mu}=\frac{\sigma_{\tau^{+} \tau^{-}}}{\sigma_{\mu^{+} \mu^{-}}}=\frac{\sqrt{1-\left(M_{\tau} c^{2} / E\right)^{2}}}{\sqrt{1-\left(M_{\mu} c^{2} / E\right)^{2}}} \times \frac{1+\frac{1}{2}\left(M_{\tau} c^{2} / E\right)^{2}}{1+\frac{1}{2}\left(M_{\mu} c^{2} / E\right)^{2}}
$$

- Note: numerator is imaginary when $E<M_{\tau} \mathrm{C}^{2}$ : this is a threshold requirement

step E, count $\tau^{+}+\tau^{-}$and $\mu^{+}+\mu^{-}$events
- Ratio is effectively $\mathrm{R}_{\tau \mu}$
- Energy $\mathrm{R}_{\tau \mu}(\mathrm{E})$ depends on the spin of the $\tau$ :
- If the particle were a scalar or vector, it would have a different E-dependence
- Measures $\tau$ mass:
W. Bacino et al.


## Angular Distribution

- From our amplitude expression:

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=g_{e}^{4}\left[1+\left(\frac{M c^{2}}{E}\right)^{2}+\left[1-\left(\frac{M c^{2}}{E}\right)^{2}\right] \cos ^{2} \theta\right]
$$

- if we go to even higher energies $\mathrm{E} \gg \mathrm{Mc}^{2}$, we obtain the simple form:


$$
\text { i section expression } \frac{d \sigma}{d \cos \theta d \phi}=\left(\frac{\hbar c}{8 \pi}\right)^{2} \frac{\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle}{4 E^{2}} \frac{\left|p_{f}\right|}{\left|p_{i}\right|}
$$

$$
\begin{gathered}
\left|p_{f}\right| \sim\left|p_{i}\right| \\
\frac{d \sigma}{d \cos \theta d \phi}=\left(\frac{\hbar c}{8 \pi}\right)^{2} \frac{g_{e}^{4}}{4 E^{2}}\left[1+\cos ^{2} \theta\right]
\end{gathered}
$$

Fig. 2. The measured tau pair differential cross section at $W$ $=34.5 \mathrm{GeV}$. The dashed line has the form $\left(1+\cos ^{2} \theta\right)$ expected from lowest order QED, normalised to the data and the full line is the result of the fit

## Cross Section at High Energy:



- If we use our same approximation: $\mathrm{Mc}^{2} \ll \mathrm{E}$
$\sigma=\frac{\pi}{3}\left(\frac{\hbar c \alpha}{E}\right)^{2} \sqrt{1-\left(M c^{2} / E\right)^{2}}\left[1+\frac{1}{2}\left(\frac{M c^{2}}{E}\right)^{2}\right]$
- becomes:
$\sigma=\frac{\pi}{3}\left(\frac{\hbar c \alpha}{E}\right)^{2}$

