Lecture 15: Spin-averaged cross sections

H. A. Tanaka



L ast time;

- We can calculate the amplitude M in QED using the Feynman rules.
- What do we do with this?

- We want a cross section or rate, so we incorporate it with the phase space
» For this we want |M|?’=M M*

- Note that the amplitudes we calculated specified the spins/helicities of the
Incoming and out-coming particles:

- often the incoming particles will be unpolarized:
- this suggests we should average over incident polarizations

* I.e sum over possible polarizations and then divide by number of
configurations

- often we cannot measure the polarization of the out coming particles
- this suggests we should sum over outgoing polarizations

- we will see that this often leads to very clean expressions . . .



Recall the “completeness” relations

Zuﬂ (v"p, + mc) Z = (v"p,, — mc)

s=1,2

 This “outer” product results in a 4x4 Dirac matrix

- Note that this is a relation that involves summing over spins, just what we
need for averaging/summing.

- This will play a critical role in what follows



M2 = MM*

—xample diagram and amplitude:

- Generically, we will encounter expressions like:
where [ Is some combination of y matrices
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Complex conjugation:

[ﬂarlub] [aar2ub]* — [ﬂaPQUb] [ﬂbfzua]

- Now recall that we want to sum over the spins of the a and b particles

> u’u’ = (y'p, +me)

- start with the b particle s=1,2
Z[ﬂafgubﬂbf’gua] — ﬂaFQ (pb + mbc)fZUa]
Sb

* now with the a particle, let’s right out the expression with indices

Z: Z[ﬁa]i [FQ (pb -+ mbC)fg]ij [ua]j

* rearrange and introduce the spin summation on a
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Final states
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Z[ﬂa]z [Fl(pb T mbc)fQ]ij Ual;

J

[pa, + mac]ji

i (p, + mbc)fg(pa + mqycC)lis

Tr[l1(p, + mbc)fg(pa + mgc)]

sum over | multiplies
the two matrices

* For this, we assumed that both a and b particles were “particles” described
by u spinors

- |f we have antiparticles (v spinors) the “+” in the mass term becomes “-*



Contracting Lorentz Indices

- There are a number of y matrix relations which we will derive now
* There are a lot of them, but they are all we need
» Get through them once (some in HW), we can just apply the results

« Start with some Lorentz “contraction” relations:

g'uyg,ul/ =4

- What does this mean? We sum 16 numbers resulting from the product
of corresponding entries in g*v and g,v. All are zero except for u=v. In
those cases, we get either (1x1) or (-1x-1) so in the end, we get 4.

- Now another simple relation using the fundamental relation for y matrices:
VYT I = 2"

d Y+ ¥ d = ay by + by auy” = apb V'Y + "M =2a - b



Other relations:

 Other relations mostly result from the previous ones:
Tuy" VYT I =29
Juv (7“7]/ T 7’/7“) — QQ/WQIW Yy + ’YMYM — 29/“/9“”

Ty =
» You can do thisuexplicitly: v = (") = (71?2 = ()% = (7°)?
* but this method will run out of steam in more complicated examples
- A few more:
ol V(29" = H47) 2" — 4" —2v"
YWY w29 =) 2y =yt
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rA+B)= TrA+ TrB
(@A) =alrA
(AB) = Tr (BA)

Trace Relations

It
It

* Reminder: we’re in a four dimensional spinor space!

« “17 = 4x4 identity matrix = Tr1 =4

Tr(~v#~") Tr(y#~" + ~Y~+H) = Tr(2g"") / 1 0 0 O \
0O —1 O 0
vy __ % py
Tr(4#~") =4 x g"” \ o 0 0 -1 )

Tr(y#9"y*7) = 4 x (¢"g™7 — g""g"" + g"79"*)
* These relations imply:
« Tr(d ) =4a-b
» Tr(d Y d) =4[(a-d)(c-d) —(a-c)(b-d)+ (a-d)(b-¢)]
. Next: the trace of any single y matrixis 0: (¥*)? =1 {4#,7°} =0
Tr(v") = Tr(y77"") = —Tr(y°9"7°) = =Tr(v°y°y")

- Likewise, we can show that the trace of a product of an odd number of y
matrices is O



—xample: e+ e—u "+

- Calculate the spin-averaged amplitude

- for simplicity let’s assume that the energies are high enough that we
can neglect the masses of the e and .

* initial spin averaged, final spin summed.

« How do we calculate the cross section in the CM frame?



Step I/ll: The Feynman
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Step lll: Summing over spins:

- To get |[M|? we need to take the complex conjugate of the M:

= — Je u Ho v u
= — s [(3) 7 o) [0(2) 7 (1),
= — e u Yo v U
2 gél — L4 — v * 1 _ *
MP? = e [0y o)) [(3) (O] [p(2)u(1)] () (1),
N [aB)y o) [aB)r v(4)]" = Tr[(v* (B — M)y (#s + Mo)
Spins
N @)y u()] B2y u(1)] = Tr [y ($1 + me)r (B — me))
Spins
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Step 1V:

* An apply the trace relations

Tr [y $ay” #s] = 4 x [pips + p3ps — 9" (P4 - p3)]

Tr [y, #1770 2] = 4 X [p1up2y + P2up1 — (P1° P2) ]
 Carry out the contraction between the Lorentz indices:

(p3 - p1)(Pa - p2) + (p3 - p2)(Pa - p1) — (P1 - P2)(Pa - p

(
(pa - p1)(p3 - p2) + (Pa - p2)(P3 - p1) — (P1 - P2) (P4 - P3)

3)
—(p1 - p2)(pa - p3) — (P2 - p1)(Pa - p3) + 4(pa - p3)(P1 - P2))

16 x [2(p1 - pa)(p2 - p3) + 2(p1 - p3) (2 - p4)]



Step [V (continued)

- Put it all together:

D IMIP = T ()7 (4] T () ()

> M= : Je )432 X [(p1 - pa)(p2 - p3) + (p1 - p3)(P2 - P4)]

4

(IM?) = o iep2)48 X [(p1 - pa)(p2 - p3) + (p1 - P3) (D2 - P4)]




Step V: The Kinematics in CM:

(IM|?) = o i§p2)48 X [(p1 - pa)(p2 - p3) + (p1 - p3) (P2 - P4)]

E/c,p'sin6,p' cos0)

=
(E/C 0 —p)
= (
(

ps = (E/c,—p' sinf, —p’ cos )




