Lecture 15: Spin-averaged cross sections

H. A. Tanaka

Last time:

- We can calculate the amplitude M in QED using the Feynman rules.
- What do we do with this?
- We want a cross section or rate, so we incorporate it with the phase space
- For this we want $|\mathrm{M}|^{2}=\mathrm{M} \mathrm{M}{ }^{*}$
- Note that the amplitudes we calculated specified the spins/helicities of the incoming and out-coming particles:
- often the incoming particles will be unpolarized:
- this suggests we should average over incident polarizations
- i.e sum over possible polarizations and then divide by number of configurations
- often we cannot measure the polarization of the out coming particles
- this suggests we should sum over outgoing polarizations
- we will see that this often leads to very clean expressions . . .

Recall the "completeness" relations

$$
\sum_{s=1,2} u^{s} \bar{u}^{s}=\left(\gamma^{\mu} p_{\mu}+m c\right) \quad \sum_{s=1,2} v^{s} \bar{v}^{s}=\left(\gamma^{\mu} p_{\mu}-m c\right)
$$

- This "outer" product results in a 4×4 Dirac matrix
- Note that this is a relation that involves summing over spins, just what we need for averaging/summing.
- This will play a critical role in what follows

Example diagram and amplitude:

$$
\mathcal{M}=-\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{v}(2) \gamma_{\mu} u(1)\right]
$$

$|\mathcal{M}|^{2}=\mathcal{M M}^{*}=\frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}}\left[\bar{u}_{3} \gamma^{\mu} v_{4}\right]\left[\bar{v}_{2} \gamma_{\mu} u_{1}\right] \times\left[\bar{u}_{3} \gamma^{\nu} v_{4}\right]^{*}\left[\bar{v}_{2} \gamma_{\nu} u_{1}\right]^{*}$

- Generically, we will encounter expressions like:

$$
\begin{array}{lrl}
{\left[\bar{u}_{a} \Gamma_{1} u_{b}\right]\left[\bar{u}_{a} \Gamma_{2} u_{b}\right]^{*}} & \begin{array}{c}
\text { where } \Gamma \text { is some combination of } \gamma \text { matrices } \\
{\left[\bar{u}_{a} \Gamma_{2} u_{b}\right]^{*}}
\end{array} & =\left[\bar{u}_{a} \Gamma_{2} u_{b}\right]^{\dagger} \\
{\left[\bar{u}_{a} \Gamma_{1} v_{b}\right]\left[\bar{u}_{a} \Gamma_{2} v_{b}\right]^{*}} & & =\left[u_{a}^{\dagger} \gamma^{0} \Gamma_{2} u_{b}\right]^{\dagger}=\left[u_{b}^{\dagger} \Gamma_{2}^{\dagger} \gamma^{0 \dagger} u_{a}\right] \\
{\left[\bar{v}_{a} \Gamma_{1} u_{b}\right]\left[\bar{v}_{b} \Gamma_{2} u_{b}\right]^{*}} & \begin{array}{c}
\gamma^{0} \gamma^{0}=1 \\
\gamma^{0 \dagger}=\gamma^{0}
\end{array} & =\left[u_{b}^{\dagger} \gamma^{0} \gamma^{0} \Gamma_{2}^{\dagger} \gamma^{0} u_{a}\right] \\
{\left[\bar{v}_{a} \Gamma_{1} v_{b}\right]\left[\bar{v}_{a} \Gamma_{2} v_{b}\right]^{*}} & \bar{\Gamma} \equiv \gamma^{0} \Gamma^{\dagger} \gamma^{0}
\end{array} \quad=\left[\bar{u}_{b} \bar{\Gamma}_{2} u_{a}\right] .
$$

Complex conjugation:

$$
\left[\bar{u}_{a} \Gamma_{1} u_{b}\right]\left[\bar{u}_{a} \Gamma_{2} u_{b}\right]^{*}=\left[\bar{u}_{a} \Gamma_{2} u_{b}\right]\left[\bar{u}_{b} \bar{\Gamma}_{2} u_{a}\right]
$$

- Now recall that we want to sum over the spins of the a and b particles
- start with the b particle

$$
\sum_{s=1,2} u^{s} \bar{u}^{s}=\left(\gamma^{\mu} p_{\mu}+m c\right)
$$

$$
\left.\sum_{s_{b}}\left[\bar{u}_{a} \Gamma_{2} u_{b} \bar{u}_{b} \bar{\Gamma}_{2} u_{a}\right] \Rightarrow \bar{u}_{a} \Gamma_{2}\left(\not p p_{b}+m_{b} c\right) \bar{\Gamma}_{2} u_{a}\right]
$$

- now with the a particle, let's right out the expression with indices

$$
\sum_{i} \sum_{j}\left[\bar{u}_{a}\right]_{i}\left[\Gamma_{2}\left(\not p_{b}+m_{b} c\right) \bar{\Gamma}_{2}\right]_{i j}\left[u_{a}\right]_{j}
$$

- rearrange and introduce the spin summation on a

$$
\sum_{i} \sum_{j}\left[\Gamma_{2}\left(\not p_{b}+m_{b} c\right) \bar{\Gamma}_{2}\right]_{i j} \sum_{s_{a}}\left[u_{a}\right]_{j}\left[\bar{u}_{a}\right]_{i}
$$

Final states

$$
\left.\begin{array}{rl}
\sum_{i} \sum_{j}\left[\bar{u}_{a}\right]_{i}\left[\Gamma_{1}\left(\not p_{b}+m_{b} c\right) \bar{\Gamma}_{2}\right]_{i j}\left[u_{a}\right]_{j} \\
\downarrow
\end{array}\right] \begin{array}{|l|l|}
a \\
\left.\hline m_{a} c\right]_{j i} & \begin{array}{l}
\text { sum over j multiplies } \\
\text { the two matrices }
\end{array}
\end{array}
$$

$$
\begin{gathered}
\sum_{i}\left[\Gamma_{1}\left(\not \not p_{b}+m_{b} c\right) \bar{\Gamma}_{2}\left(\not p a+m_{a} c\right)\right]_{i i} \\
\operatorname{Tr}\left[\Gamma_{1}\left(\not p_{b}+m_{b} c\right) \bar{\Gamma}_{2}\left(\not p_{a}+m_{a} c\right)\right]
\end{gathered}
$$

- For this, we assumed that both a and b particles were "particles" described by u spinors
- If we have antiparticles (v spinors) the " + " in the mass term becomes "-"

Contracting Lorentz Indices

- There are a number of γ matrix relations which we will derive now
- There are a lot of them, but they are all we need
- Get through them once (some in HW), we can just apply the results
- Start with some Lorentz "contraction" relations:

$$
g^{\mu \nu} g_{\mu \nu}=4
$$

- What does this mean? We sum 16 numbers resulting from the product of corresponding entries in $\mathrm{g}^{\mu \nu}$ and $\mathrm{g}_{\mu v}$. All are zero except for $\mu=v$. In those cases, we get either (1 x 1) or $(-1 \mathrm{x}-1)$ so in the end, we get 4.
- Now another simple relation using the fundamental relation for γ matrices:

$$
\begin{aligned}
& \gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \\
& \not x \not b+\not \subset \not Q=a_{\mu} \gamma^{\mu} b_{\nu} \gamma^{\nu}+b_{\nu} \gamma^{\nu} a_{\mu} \gamma^{\mu}=a_{\mu} b_{\nu}\left\{\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}\right\}=2 a \cdot b
\end{aligned}
$$

Other relations:

- Other relations mostly result from the previous ones:
$\gamma_{\mu} \gamma^{\mu} \quad \gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}$

$$
\begin{aligned}
& g_{\mu \nu}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}\right)=2 g_{\mu \nu} g^{\mu \nu} \quad \gamma_{\nu} \gamma^{\nu}+\gamma_{\mu} \gamma^{\mu}=2 g_{\mu \nu} g^{\mu \nu} \\
& \gamma_{\mu} \gamma^{\mu}=4
\end{aligned}
$$

- You can do this explicitly: $\gamma_{\mu} \gamma^{\mu}=\left(\gamma^{0}\right)^{2}-\left(\gamma^{1}\right)^{2}-\left(\gamma^{2}\right)^{2}-\left(\gamma^{3}\right)^{2}$
- but this method will run out of steam in more complicated examples
- A few more:

$$
\begin{array}{llcc}
\gamma_{\mu} \gamma^{\nu} \gamma^{\mu} & \gamma_{\mu}\left(2 g^{\mu \nu}-\gamma^{\mu} \gamma^{\nu}\right) & 2 \gamma^{\nu}-4 \gamma^{\nu} & -2 \gamma^{\nu} \\
\gamma_{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma^{\mu} & \gamma_{\mu} \gamma^{\nu}\left(2 g^{\lambda \mu}-\gamma^{\mu} \gamma^{\lambda}\right) & 2 \gamma^{\lambda} \gamma^{\nu}-\gamma_{\mu} \gamma^{\nu} \gamma^{\mu} \gamma^{\lambda} \\
& 2 \gamma^{\lambda} \gamma^{\nu}+2 \gamma^{\nu} \gamma^{\lambda} & 4 g^{\nu \lambda} \\
\gamma_{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma^{\sigma} \gamma^{\mu} & -2 \gamma^{\sigma} \gamma^{\lambda} \gamma^{\nu} &
\end{array}
$$

Trace Relations

$$
\begin{aligned}
& \operatorname{Tr}(\mathrm{A}+\mathrm{B})=\operatorname{Tr} \mathrm{A}+\operatorname{Tr} \mathrm{B} \\
& \operatorname{Tr}(\mathrm{a} A)=\mathrm{a} \operatorname{Tr} \mathrm{~A} \\
& \operatorname{Tr}(\mathrm{AB})=\operatorname{Tr}(\mathrm{BA})
\end{aligned}
$$

- Reminder: we're in a four dimensional spinor space!
- " 1 " $=4 \times 4$ identity matrix $\Rightarrow \operatorname{Tr} 1=4$
- $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)$

$$
\begin{aligned}
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}\right)=\operatorname{Tr}\left(2 g^{\mu \nu}\right) \\
& 2 \times \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=2 \times \operatorname{Tr}\left(g^{\mu \nu}\right) \\
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 \times g^{\mu \nu}
\end{aligned} \quad g^{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

$\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma^{\sigma}\right)=4 \times\left(g^{\mu \nu} g^{\lambda \sigma}-g^{\mu \lambda} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \lambda}\right)$

- These relations imply:
- $\operatorname{Tr}(\not \subset b)=4 a \cdot b$
- $\operatorname{Tr}(\not \subset \nmid \not \subset \not \subset d)=4[(a \cdot b)(c \cdot d)-(a \cdot c)(b \cdot d)+(a \cdot d)(b \cdot c)]$
- Next: the trace of any single γ matrix is $0:\left(\gamma^{5}\right)^{2}=1 \quad\left\{\gamma^{\mu}, \gamma^{5}\right\}=0$
- $\operatorname{Tr}\left(\gamma^{\mu}\right)=\operatorname{Tr}\left(\gamma^{5} \gamma^{5} \gamma^{\mu}\right)=-\operatorname{Tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{5}\right)=-\operatorname{Tr}\left(\gamma^{5} \gamma^{5} \gamma^{\mu}\right)$
- Likewise, we can show that the trace of a product of an odd number of γ matrices is 0

Example: $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \mu^{+}+\mu^{-}$

- Calculate the spin-averaged amplitude
- for simplicity let's assume that the energies are high enough that we can neglect the masses of the e and μ.
- initial spin averaged, final spin summed.
- How do we calculate the cross section in the CM frame?

Step I/II: The Feynman Diagram and rules

$$
\begin{gathered}
\frac{1}{(2 \pi)^{4}} \int d^{4} q \frac{-i g_{\mu \nu}}{q^{2}} \\
\bar{u}(3) i g_{e} \gamma^{\mu} v(4)(2 \pi)^{4} \delta^{4}\left(q-p_{3}-p_{4}\right) \\
\bar{v}(2) i g_{e} \gamma^{\nu} u(1)(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-q\right) \\
{\left[\bar{u}(3) \gamma^{\mu} v(4)\right] g_{\mu \nu}\left[\bar{v}(2) \gamma^{\nu} u(1)\right]} \\
i(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \times \frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}} \\
\mathcal{M}=-\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{v}(2) \gamma_{\mu} u(1)\right]
\end{gathered}
$$

Step III: Summing over spins:

- To get $|M|^{2}$ we need to take the complex conjugate of the M :

$$
\begin{aligned}
\mathcal{M}= & -\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{v}(2) \gamma_{\mu} u(1)\right] \\
\mathcal{M}^{*}= & -\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\nu} v(4)\right]^{*}\left[\bar{v}(2) \gamma_{\nu} u(1)\right]^{*} \\
|\mathcal{M}|^{2}= & \frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{u}(3) \gamma^{\nu} v(4)\right]^{*}\left[\bar{v}(2) \gamma_{\mu} u(1)\right]\left[\bar{v}(2) \gamma_{\nu} u(1)\right]^{*} \\
& \sum_{\operatorname{spins}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{u}(3) \gamma^{\nu} v(4)\right]^{*}=\operatorname{Tr}\left[\left(\gamma^{\mu}\left(\not p_{4}-M c\right) \gamma^{\nu}\left(\not p_{3}+M c\right)\right]\right. \\
& \sum_{\text {spins }}\left[\bar{v}(2) \gamma^{\mu} u(1)\right]\left[\bar{v}(2) \gamma^{\nu} u(1)\right]^{*}=\operatorname{Tr}\left[\gamma_{\mu}\left(\not p_{1}+m c\right) \gamma_{\nu}\left(\not p_{2}-m c\right)\right]
\end{aligned}
$$

$$
\sum_{\text {spins }}|\mathcal{M}|^{2}=\frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}} \operatorname{Tr}\left[\gamma^{\mu}\left(\not p_{4}\right) \gamma^{\nu}\left(\not p_{3}\right)\right] \operatorname{Tr}\left[\gamma_{\mu}\left(\not p_{1} \gamma_{\nu}\left(\not p_{2}\right)\right]\right.
$$

Step IV:

- An apply the trace relations
$\operatorname{Tr}\left[\gamma^{\mu} \not p_{4} \gamma^{\nu} \not p_{3}\right]=4 \times\left[p_{4}^{\mu} p_{3}^{\nu}+p_{3}^{\mu} p_{4}^{\nu}-g^{\mu \nu}\left(p_{4} \cdot p_{3}\right)\right]$
$\operatorname{Tr}\left[\gamma_{\mu} \not p_{1} \gamma_{\nu} \not p_{2}\right]=4 \times\left[p_{1 \mu} p_{2 \nu}+p_{2 \mu} p_{1 \nu}-\left(p_{1} \cdot p_{2}\right) g_{\mu \nu}\right]$
- Carry out the contraction between the Lorentz indices:

$$
\begin{array}{r}
16 \times(\\
\left(p_{4} \cdot p_{1}\right)\left(p_{3} \cdot p_{2}\right)+\left(p_{4} \cdot p_{2}\right)\left(p_{3} \cdot p_{1}\right)-\left(p_{1} \cdot p_{2}\right)\left(p_{4} \cdot p_{3}\right) \\
\left(p_{3} \cdot p_{1}\right)\left(p_{4} \cdot p_{2}\right)+\left(p_{3} \cdot p_{2}\right)\left(p_{4} \cdot p_{1}\right)-\left(p_{1} \cdot p_{2}\right)\left(p_{4} \cdot p_{3}\right) \\
\left.-\left(p_{1} \cdot p_{2}\right)\left(p_{4} \cdot p_{3}\right)-\left(p_{2} \cdot p_{1}\right)\left(p_{4} \cdot p_{3}\right)+4\left(p_{4} \cdot p_{3}\right)\left(p_{1} \cdot p_{2}\right)\right)
\end{array}
$$

$$
16 \times\left[2\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)+2\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)\right]
$$

Step IV (continued)

- Put it all together:

$$
\sum_{\text {spins }}|\mathcal{M}|^{2}=\frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}} \operatorname{Tr}\left[\gamma^{\mu}\left(\not p_{4}\right) \gamma^{\nu}\left(\not p_{3}\right)\right] \operatorname{Tr}\left[\gamma_{\mu}\left(\not p_{1}\right) \gamma_{\nu}\left(\not p_{2}\right)\right]
$$

$$
\sum_{\text {spins }}|\mathcal{M}|^{2}=\frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}} 32 \times\left[\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)+\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)\right]
$$

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}} 8 \times\left[\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)+\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)\right]
$$

Step V: The Kinematics in CM:

$$
\begin{aligned}
& \left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}} 8 \times\left[\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)+\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)\right] \\
& \\
& e^{+} \mathrm{e}^{+} \quad \begin{array}{l}
p_{1}=(E / c, 0, p) \\
p_{2}=(E / c, 0,-p) \\
p_{3}=\left(E / c, p^{\prime} \sin \theta, p^{\prime} \cos \theta\right) \\
p_{4}=\left(E / c,-p^{\prime} \sin \theta,-p^{\prime} \cos \theta\right) \\
p^{\prime}=\sqrt{E^{2} / c^{2}-m^{2} c^{2}} \quad \begin{array}{l}
p^{\prime}=m^{2} / c^{2}-M^{2} c^{2}
\end{array}
\end{array}
\end{aligned}
$$

