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Last time:

• We can calculate the amplitude M in QED using the Feynman rules.

• What do we do with this?


• We want a cross section or rate, so we incorporate it with the phase space

• For this we want |M|2=M M*


• Note that the amplitudes we calculated specified the spins/helicities of the 
incoming and out-coming particles:

• often the incoming particles will be unpolarized:


• this suggests we should average over incident polarizations

• i.e sum over possible polarizations and then divide by number of 

configurations

• often we cannot measure the polarization of the out coming particles


• this suggests we should sum over outgoing polarizations

• we will see that this often leads to very clean expressions . . . 



Recall the “completeness” relations

• This “outer” product results in a 4x4 Dirac matrix 


• Note that this is a relation that involves summing over spins, just what we 
need for averaging/summing. 


• This will play a critical role in what follows
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Example diagram and amplitude:

• Generically, we will encounter expressions like:
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Complex conjugation:

• Now recall that we want to sum over the spins of the a and b particles


• start with the b particle


• now with the a particle, let’s right out the expression with indices


• rearrange and introduce the spin summation on a 
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Final states

• For this, we assumed that both a and b particles were “particles” described 
by u spinors


• If we have antiparticles (v spinors) the “+” in the mass term becomes “-“
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Contracting Lorentz Indices

• There are a number of γ matrix relations which we will derive now

• There are a lot of them, but they are all we need 

•  Get through them once (some in HW), we can just apply the results


• Start with some Lorentz “contraction” relations:


• Now another simple relation using the fundamental relation for γ matrices:

gµ⇥gµ⇥ = 4
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• What does this mean? We sum 16 numbers resulting from the product 
of corresponding entries in gµν and gµν. All are zero except for µ=ν. In 
those cases, we get either (1x1) or (-1x-1) so in the end, we get 4.
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Other relations:

• Other relations mostly result from the previous ones:


• You can do this explicitly:

• but this method will run out of steam in more complicated examples


• A few more:
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Trace Relations

• Reminder: we’re in a four dimensional spinor space!

• “1” = 4x4 identity matrix  ⇒  Tr 1 = 4


•  


 

• These relations imply:


•  

•  


• Next: the trace of any single γ matrix is 0:

•  

• Likewise, we can show that the trace of a product of an odd number of γ 

matrices is 0
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Example: e++ e-→µ+ + µ-

• Calculate the spin-averaged amplitude


• for simplicity let’s assume that the energies are high enough that we 
can neglect the masses of the e and μ.


• initial spin averaged, final spin summed.


• How do we calculate the cross section in the CM frame?



Step I/II: The Feynman Diagram and rules 
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Step III: Summing over spins:

• To get |M|2 we need to take the complex conjugate of the M:
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[ū(3)�µv(4)] [ū(3)�⇥v(4)]� = Tr [(�µ( ⇥p4 �Mc)�⇥(⇥p3 + Mc)]

�

spins
|M|2 =

g4
e

(p1 + p2)4
Tr [�µ(�p4)�⇥(�p3)] Tr [�µ(�p1�⇥( �p2)]



• An apply the trace relations


• Carry out the contraction between the Lorentz indices:

Step IV:
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Step IV (continued)

• Put it all together:
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Step V: The Kinematics in CM:
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