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The Photon

« Apart from Y1) we need some other particle/object with definite Lorentz
transformation properties to make Lorentz invariants

- What would we do with the “vector” term ¥7*% to get a Lorentz
scalar?

- Recall the photon:

» Classically, we have Maxwell’s equations:
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* Recall that we can re-express the Maxwell equations using potentials:
E=-Vo¢ B=VxA
- these can in turn be combined to make a 4 vector: A* = (¢, A)

- Likewise for the “source” terms p and J: JH = (cp,J)



Maxwell’s Equation in Lorentz Covariant Form

- All four equations can be expressed as:  ['#¥ = gl AY — gV A* =
4
0,0 A” — 9 (9, AM) = %TJ”
* The issue is that A is (far) from unique:

- Consider: A, — A, +0,A \ gy
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- the last terms cancel, so the “new” A, Iis also a solution to Maxwell’s
solution

» they are physically the same, so we can make some conventions:

4
» “Lorentz gauge condition”:  9,A" =0 0,0"AY = —WJ”
C

« “Coulomb gauge” A% =0 V-A=0



Solutions to the Maxwell Equation in Free Space:

* “Free” means no sources (charges, currents): J+=0 0"9,A" =0
 Find solution as usual by ansatz:
A (x) = a e P et (p)

 Now check:

0, A" (z) = —ip, a e P (p) 0,A" =0=p,e(p) =0
19, A" (x) = (—i)°p'p, a e """ (p) =0 p* =m?c® =0
A'=0=¢ =0
= p-e=0

- Conclusions:
« Photon is massless
 Polarization ¢ is transverse to photon direction:

* it has two degrees of freedom/polarizations



Making a “scalar” object:

* In the end, these spaces must collapse:

- In Lorentz space, this happens by contracting indices: g..a"b” = a"b,,

* In spinor space, products of adjoint spinors with spinors (with gamma
matrices possibly in between): u;I'vs  I'=(product of g matrices)

* but some expressions have structure in both:

sum over u collapses
the Lorentz structure
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sum over u collapses
the Lorentz structure



Reminder of

Dirac SpINors

 We can now construct the column vector u:
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A second look at Dirac spinors

electrons positrons
Y(z) = ae”MPT 5 (p) Y(z) = ael’ PP 3 (p)

- “s” |abels the spin states (two for electrons/positrons)
* The exponential term sets the space/time = energy/momentum
 Let’s look at the “spinor” part u,v which determines the “Dirac structure”:

- If we insert v into the Dirac equation, we get:
(" Oy —me)p =0 = (Y'pu —me)p = 0= (v"'py —me)u’(p) =0
(thy" 0y — me)p = 0 = (—="py —me)y = 0 = (v, + me)v’(p) =0

“momentum space Dirac equations”

* If we take the adjoint of these equations, we get:
u® (y'p, —me) =0 v (v'p, +me) =0



Orthogonality and Completeness of Spinors:

* From the explicit form of our u/v spinors, we can also show:
! = 2me 69 T = —2me 7V w' =0 =0

 We can also show:

) wE = (3P + mo) v*0° = (y"p, — me)
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/ ai \ / albl albg a1b3 a1b4 \
a2 (b bo ba. b ) _ azby  azbz  agxbs  agby
as 1, ¥2, 73,74 a3b1 a3b2 a3b3 a3b4

\ a4 ) \ a4b1 a4b2 a4b3 a4b4 )



Photon Polarizations and Orthogonality:

- We showed that the polarization 4-vector e« with the Lorentz and Coloumb
gauge conditions must satisfy:

p-e=0

» We noted that this allows two degrees of freedom corresponding to
transversely polarized electromagnetic fields.

» We need to two orthogonal ¢ basis vectors to span the space

* For example, if the photon is moving in the z direction, we can choose:
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* The polarization vectors satisfy orthogonality/completeness relations:

= N

o y s sx o
ez*e‘” = —o" E €€ — 0ij — PiPj
s=1,2



The Feynman Rules: External Lines

* First right down the Feynman diagram(s) for the process and label the
momentum flow

 use p’s for external lines, g’s for internal (Griffiths convention).
* Note that there are two flows:

» “particle/antiparticle” p\
1

* momentum
* These are separate
* Now the components of the expression p;/
- External Lines:
» Electrons: incoming u®(p) outgoing @’ (p)
* Positrons: incoming #°(p) outgoing v*®(p)

» Photons: incoming €,(p) outgoing EZ(Z?)



The Feynman Rules: Vertices and Propagators:

- For each QED vertex: igey” (2m)* 6% (k1 + ko + k3)
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* where as before, momentum is “+” incoming, “-” outgoing from vertex

* |Internal lines:
i(y*qu + me)

- electron/positron propagator

q2 _ m202
» Photon propagator _7’92“”
* indices match vertices/polarization o
_ q
Integral over momentum: (27)

 Finally: cancel the overall delta function, what remains is -iM



—xample:

» Order matters due to Dirac matrix structure (photon part doesn’t care)
» Griffiths: go backward through the fermion lines:

- In the “final state”: (3) igey” v(4) (2m)*0*(q — p3 — pa)

+ In the “initial state”: 9(2) igey” w(1) (2m)*6*(p1 +p2 — q)

* Throw in the internal photon propagator: 1 /d4q —1Gu
(2m) q°
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—Xample: et + e = et+ e

(2ﬁ)454(p1 + p2 — P3 — P4)



