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The Photon
• Apart from        we need some other particle/object with definite Lorentz 

transformation properties to make Lorentz invariants

• What would we do with the “vector” term            to get a Lorentz 

scalar?

• Recall the photon:


• Classically, we have Maxwell’s equations:


• Recall that we can re-express the Maxwell equations using potentials:


• these can in turn be combined to make a 4 vector:

• Likewise for the “source” terms ρ and J: 
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Maxwell’s Equation in Lorentz Covariant Form
• All four equations can be expressed as:


• The issue is that A is (far) from unique:

• Consider:


• the last terms cancel, so the “new” Aµ is also a solution to Maxwell’s 
solution


• they are physically the same, so we can make some conventions:

• “Lorentz gauge condition”:

• “Coulomb gauge”
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Solutions to the Maxwell Equation in Free Space:

• “Free” means no sources (charges, currents): Jµ=0

• Find solution as usual by ansatz:


• Now check:


• Conclusions:

• Photon is massless

• Polarization ε is transverse to photon direction: 


• it has two degrees of freedom/polarizations
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Making a “scalar” object:

• In the end, these spaces must collapse:

• In Lorentz space, this happens by contracting indices:

• In spinor space, products of adjoint spinors with spinors (with gamma 

matrices possibly in between):              Г=(product of g matrices)

• but some expressions have structure in both:
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Reminder of Dirac Spinors

• We can now construct the column vector u:
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Use “positive” energy solutions

Use “negative” energy solutions
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A second look at Dirac spinors

• “s” labels the spin states (two for electrons/positrons)

• The exponential term sets the space/time = energy/momentum

• Let’s look at the “spinor” part u,v which determines the “Dirac structure”:


• If we insert ψ into the Dirac equation, we get:


• If we take the adjoint of these equations, we get:
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Orthogonality and Completeness of Spinors:

• From the explicit form of our u/v spinors, we can also show:


• We can also show:
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Photon Polarizations and Orthogonality:
• We showed that the polarization 4-vector εμ with the Lorentz and Coloumb 

gauge conditions must satisfy:


• We noted that this allows two degrees of freedom corresponding to 
transversely polarized electromagnetic fields. 

• We need to two orthogonal ε basis vectors to span the space


• For example, if the photon is moving in the z direction, we can choose:


• The polarization vectors satisfy orthogonality/completeness relations:
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The Feynman Rules: External Lines

• First right down the Feynman diagram(s) for the process and label the 
momentum flow

• use p’s for external lines, q’s for internal (Griffiths convention).

• Note that there are two flows:


• “particle/antiparticle”

• momentum 

• These are separate


• Now the components of the expression

• External Lines:


• Electrons: incoming              outgoing

• Positrons: incoming              outgoing

• Photons:   incoming              outgoing    
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The Feynman Rules: Vertices and Propagators:

• For each QED vertex:

• where as before, momentum is “+” incoming, “-” outgoing from vertex


• Internal lines:

• electron/positron propagator


• Photon propagator

• indices match vertices/polarization


• Integral over momentum:


• Finally: cancel the overall delta function, what remains is -iM
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Example:

• Order matters due to Dirac matrix structure (photon part doesn’t care)

• Griffiths: go backward through the fermion lines:


• In the “final state”: 

• In the “initial state”:

• Throw in the internal photon propagator:
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Example: e+ + e- →  e+ + e-
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