Photons and Quantum Electrodynamics

H. A. Tanaka

The Photon

- Apart from $\bar{\psi} \psi$ we need some other particle/object with definite Lorentz transformation properties to make Lorentz invariants
- What would we do with the "vector" term $\bar{\psi} \gamma^{\mu} \psi$ to get a Lorentz scalar?
- Recall the photon:
- Classically, we have Maxwell's equations:

$$
\begin{array}{cc}
\nabla \cdot \mathbf{E}=4 \pi \rho & \nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{E}+\frac{1}{c} \dot{\mathbf{B}}=0 & \nabla \times \mathbf{B}-\frac{1}{c} \dot{\mathbf{E}}=\frac{4 \pi}{c} \mathbf{J}
\end{array}
$$

- Recall that we can re-express the Maxwell equations using potentials:

$$
\mathbf{E}=-\nabla \phi \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

- these can in turn be combined to make a 4 vector: $A^{\mu}=(\phi, \mathbf{A})$
- Likewise for the "source" terms ρ and $\mathbf{J}: \quad J^{\mu}=(c \rho, \mathbf{J})$

Maxwell's Equation in Lorentz Covariant Form

- All four equations can be expressed as: $F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}=$

$$
\partial_{\mu} \partial^{\mu} A^{\nu}-\partial^{\nu}\left(\partial_{\mu} A^{\mu}\right)=\frac{4 \pi}{c} J^{\nu}
$$

- The issue is that A is (far) from unique:
- Consider: $\quad A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \lambda$

$$
\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

$\partial_{\mu} \partial^{\mu}\left(A^{\nu}+\partial^{\nu} \lambda\right)-\partial^{\nu}\left(\partial_{\mu}\left(A^{\mu}+\partial^{\mu} \lambda\right)=\right.$

$$
\partial_{\mu} \partial^{\mu} A^{\nu}-\partial^{\nu}\left(\partial_{\mu}\left(A^{\mu}\right)+\partial_{\mu} \partial^{\mu} \partial^{\nu} \lambda-\partial^{\nu} \partial_{\mu} \partial^{\mu} \lambda\right.
$$

- the last terms cancel, so the "new" A_{μ} is also a solution to Maxwell's solution
- they are physically the same, so we can make some conventions:
- "Lorentz gauge condition": $\partial_{\mu} A^{\mu}=0 \quad \partial_{\mu} \partial^{\mu} A^{\nu}=\frac{4 \pi}{c} J^{\nu}$
- "Coulomb gauge"
$A^{0}=0$
$\nabla \cdot \mathbf{A}=0$

Solutions to the Maxwell Equation in Free Space:

- "Free" means no sources (charges, currents): $J^{\mu}=0 \quad \partial^{\mu} \partial_{\mu} A^{\nu}=0$
- Find solution as usual by ansatz:

$$
A^{\mu}(x)=a e^{-i p \cdot x} \epsilon^{\mu}(p)
$$

- Now check:

$$
\begin{array}{ll}
\partial_{\mu} A^{\nu}(x)=-i p_{\mu} a e^{-i p \cdot x} \epsilon^{\nu}(p) & \partial_{\mu} A^{\mu}=0 \Rightarrow p_{\mu} \epsilon^{\mu}(p)=0 \\
\partial^{\mu} \partial_{\mu} A^{\nu}(x)=(-i)^{2} p^{\mu} p_{\mu} a e^{-i p \cdot x} \epsilon^{\nu}(p)=0 & p^{2}=m^{2} c^{2}=0 \\
& A^{0}=0 \Rightarrow \epsilon^{0}=0 \\
& \Rightarrow \mathbf{p} \cdot \epsilon=0
\end{array}
$$

- Conclusions:
- Photon is massless
- Polarization ε is transverse to photon direction:
- it has two degrees of freedom/polarizations

Making a "scalar" object:

- In the end, these spaces must collapse:
- In Lorentz space, this happens by contracting indices: $g_{\mu \nu} a^{\mu} b^{\nu}=a^{\mu} b_{\mu}$
- In spinor space, products of adjoint spinors with spinors (with gamma matrices possibly in between): $\overline{u_{1}} \Gamma v_{2} \quad \Gamma=($ product of g matrices)
- but some expressions have structure in both:

$$
\begin{aligned}
& \text { sum over } \mu \text { collapses } \\
& \text { the Lorentz structure } \\
& \mathcal{M}=-\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\frac{\left.\bar{u}(3) \gamma^{\mu} v(4)\right][\bar{v}(2) \downarrow}{\uparrow} \gamma_{\mu}^{\uparrow} u(1)\right] \\
& \text { Contracted in spinor Same here } \\
& \text { space, but not in Lorentz }
\end{aligned}
$$

Reminder of Dirac Spinors

- We can now construct the column vector u:

Use "positive" energy solutions

$$
-v_{2} \equiv u_{3}=N\left(\begin{array}{c}
p_{z} c /\left(E+m c^{2}\right) \\
\left(p_{x}+i p_{y}\right) c /\left(E+m c^{2}\right) \\
1 \\
0
\end{array}\right) \quad v_{\text {Use "negative" energy solutions }} \quad v_{1} \equiv u_{4}=N\left(\begin{array}{c}
\left(p_{x}-i p_{y}\right) c /\left(E+m c^{2}\right) \\
-p_{z} c /\left(E+m c^{2}\right) \\
0 \\
1
\end{array}\right)
$$

positrons

A second look at Dirac spinors

$$
\begin{gathered}
\text { electrons } \\
\psi(x)=a e^{-(i / \hbar) p \cdot x} u^{s}(p)
\end{gathered}
$$

$$
\begin{gathered}
\text { positrons } \\
\psi(x)=a e^{(i / \hbar) p \cdot x} v^{s}(p)
\end{gathered}
$$

- "s" labels the spin states (two for electrons/positrons)
- The exponential term sets the space/time = energy/momentum
- Let's look at the "spinor" part u,v which determines the "Dirac structure":
- If we insert ψ into the Dirac equation, we get:

$$
\begin{aligned}
& \left(i \hbar \gamma^{\mu} \partial_{\mu}-m c\right) \psi=0 \Rightarrow\left(\gamma^{\mu} p_{\mu}-m c\right) \psi=0 \Rightarrow\left(\gamma^{\mu} p_{\mu}-m c\right) u^{s}(p)=0 \\
& \left(i \hbar \gamma^{\mu} \partial_{\mu}-m c\right) \psi=0 \Rightarrow\left(-\gamma^{\mu} p_{\mu}-m c\right) \psi=0 \Rightarrow\left(\gamma^{\mu} p_{\mu}+m c\right) v^{s}(p)=0
\end{aligned}
$$

"momentum space Dirac equations"

- If we take the adjoint of these equations, we get:

$$
\bar{u}^{s}\left(\gamma^{\mu} p_{\mu}-m c\right)=0 \quad \bar{v}^{s}\left(\gamma^{\mu} p_{\mu}+m c\right)=0
$$

Orthogonality and Completeness of Spinors:

- From the explicit form of our u/v spinors, we can also show:

$$
\bar{u}^{i} u^{j}=2 m c \delta^{i j} \quad \bar{v}^{i} v^{j}=-2 m c \delta^{i j} \quad \bar{u}^{i} v^{j}=\bar{v}^{i} u^{j}=0
$$

- We can also show:

$$
\sum_{s=1,2} u^{s} \bar{u}^{s}=\left(\gamma^{\mu} p_{\mu}+m c\right) \quad \sum_{s=1,2} v^{s} \bar{v}^{s}=\left(\gamma^{\mu} p_{\mu}-m c\right)
$$

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)\left(b_{1}, b_{2}, b_{3}, b_{4}\right)=\left(\begin{array}{cccc}
a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} & a_{1} b_{4} \\
a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} & a_{2} b_{4} \\
a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3} & a_{3} b_{4} \\
a_{4} b_{1} & a_{4} b_{2} & a_{4} b_{3} & a_{4} b_{4}
\end{array}\right)
$$

Photon Polarizations and Orthogonality:

- We showed that the polarization 4 -vector ε^{μ} with the Lorentz and Coloumb gauge conditions must satisfy:

$$
\mathbf{p} \cdot \epsilon=0
$$

- We noted that this allows two degrees of freedom corresponding to transversely polarized electromagnetic fields.
- We need to two orthogonal ε basis vectors to span the space
- For example, if the photon is moving in the z direction, we can choose:

$$
\epsilon_{\mu}^{1}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
0
\end{array}\right) \quad \epsilon_{\mu}^{2}=\left(\begin{array}{c}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

- The polarization vectors satisfy orthogonality/completeness relations:

$$
\epsilon_{\mu}^{i *} \epsilon^{\mu j}=-\delta^{i j} \quad \sum_{s=1,2} \epsilon_{i}^{s} \epsilon_{j}^{s *}=\delta_{i j}-\hat{\mathbf{p}}_{i} \hat{\mathbf{p}}_{j}
$$

The Feynman Rules: External Lines

- First right down the Feynman diagram(s) for the process and label the momentum flow
- use p's for external lines, q's for internal (Griffiths convention).
- Note that there are two flows:
- "particle/antiparticle"
- momentum
- These are separate
- Now the components of the expression
- External Lines:

- Electrons: incoming $u^{s}(p)$ outgoing $\bar{u}^{s}(p)$
- Positrons: incoming $\bar{v}^{s}(p)$ outgoing $v^{s}(p)$
- Photons: incoming $\epsilon_{\mu}(p)$ outgoing $\epsilon_{\mu}^{*}(p)$

The Feynman Rules: Vertices and Propagators:

- For each QED vertex: $\quad i g_{e} \gamma^{\mu}(2 \pi)^{4} \delta^{4}\left(k_{1}+k_{2}+k_{3}\right)$
- where as before, momentum is "+" incoming, "-" outgoing from vertex
- Internal lines:
- electron/positron propagator

$$
\frac{i\left(\gamma^{\mu} q_{\mu}+m c\right)}{q^{2}-m^{2} c^{2}}
$$

- Photon propagator
- indices match vertices/polarization
- Integral over momentum:

$$
\begin{aligned}
& \frac{-i g_{\mu \nu}}{q^{2}} \\
& \frac{d^{4} q}{(2 \pi)^{4}}
\end{aligned}
$$

- Finally: cancel the overall delta function, what remains is -iM

Example:

- Order matters due to Dirac matrix structure (photon part doesn't care)
- Griffiths: go backward through the fermion lines:
- In the "final state": $\bar{u}(3) i g_{e} \gamma^{\mu} v(4)(2 \pi)^{4} \delta^{4}\left(q-p_{3}-p_{4}\right)$
- In the "initial state": $\bar{v}(2) i g_{e} \gamma^{\nu} u(1)(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-q\right)$
- Throw in the internal photon propagator: $\frac{1}{(2 \pi)^{4}} \int d^{4} q \frac{-i g_{\mu \nu}}{q^{2}}$

$$
i(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \times \frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right] g_{\mu \nu}\left[\bar{v}(2) \gamma^{\nu} u(1)\right]
$$

$$
\mathcal{M}=-\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{v}(2) \gamma_{\mu} u(1)\right]
$$

Example: $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{e}^{+}+\mathrm{e}^{-}$

$\bar{u}(3) i g_{e} \gamma^{\mu} u(1) \bar{v}(2) i g_{e} \gamma^{\nu} v(4) \frac{-i g_{\mu \nu}}{\left(p_{1}-p_{3}\right)^{2}}$
$\bar{u}(3) i g_{e} \gamma^{\rho} v(4) \bar{v}(2) i g_{e} \gamma^{\sigma} u(1) \frac{-i g_{\rho \sigma}}{\left(p_{1}+p_{2}\right)^{2}}$

$$
(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right)
$$

