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Lorentz Properties:

• The Dirac equation “works” in all reference frames.

•  What exactly does this mean?


• i, ħ, m and c are constants that don’t change with reference frames.

• ∂µ and ψ will change with reference frames, however.


• ∂µ is a derivative that will be taken with respect to the space-time 
coordinates in the new reference frame. We’ll call this ∂’µ


• how does ψ change?

• ψ’ = Sψ where ψ’ is the spinor in the new reference frame

•  Putting this together, we have the following transformation of the equation 
when evaluating it in a new reference frame

i��µ⇤µ⇥ �mc ⇥ = 0 ⇥ i��µ⇤�
µ⇥� �mc ⇥� = 0

i��µ⇤µ⇥ �mc ⇥ = 0

i��µ⇤�
µ(S⇥)�mc (S⇥) = 0What properties does S need to 

make this work?

“Lorentz Covariant”



Transformation of derivatives

• Since we know how to relate space time coordinates in one reference with 
another (i.e. Lorentz transformation), we can do the same for the 
derivatives


• Using the chain rule, we get:


• where we view x as a function x’ (i.e. the original coordinates as a 
function of the transformed or primed coordinates).


• Note the summation over ν

•  if the primed coordinates moving along the x axis with velocity βc:
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(⇤ = 0, µ = 0)� ⇧x0
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etc.



Transforming the Dirac Equation:
i��µ⇤µ⇥ �mc ⇥ = 0 ⇥ i��µ⇤�

µ⇥� �mc ⇥� = 0

i��µ ⇤x⇥

⇤xµ� ⇤⇥(S⇥)�mc (S⇥) = 0

S is constant in space time, so we can 
move it to the left of the derivatives

i��µS
⇤x⇥

⇤xµ� ⇤⇥⇥ �mc (S⇥) = 0

Now slap S-1 from both sides

Since these equations must be the same, S must satisfy

i���⇤�⇥ �mc ⇥ = 0

�⇥ = S�1�µS
⇥x⇥

⇥xµ⇥

i��µ⇤�
µ(S⇥)�mc (S⇥) = 0
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Example: The parity operator

• For the parity operator, we want to invert the spatial coordinates while 
keeping the time coordinate unchanged:


• We then have

P =
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1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

⇥

⌃⌃⌅
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�2 = �S�1�2S
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�0 =
�

1 0
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(�0)2 = 1

{�µ, �⇥} = 2gµ⇥ ⇥ �0�i = ��i�0

�0 = �0�0�0 = �0�⇥ = S�1�µS
⇥x⇥

⇥xµ⇥

Recalling We find that γ0 satisfies our needs

�i = ��0�i�0 = �0�0�i = �i

SP = �0



“Bilinear Covariants”

• We can now study the Lorentz transformation properties of Dirac fields

• Recall that for four vectors aµ, bµ 

• aµ, bµ transform as Lorentz vectors (obviously)

• aµbµ is a scalar (does not change under Lorentz transformations

• aµbν is a tensor (each has a Lorentz transformation)


• From the previous discussion, we know:

• Dirac spinors have four components, but don’t transform as Lorentz 

vectors

• How do combinations of Dirac spinors change under Lorentz 

Transformations?



How do we construct a scalar?

• We can use γ0: define:

• We can also show generally that

• This gives us

• so this is a Lorentz scalar (possibly a pseudo scalar)


• We can construct the parity operator to check how       transforms under 
the parity operation.

• Recall SP = γ0

• We can investigate how       transforms under parity

⇥̄ = ⇥†�0

S†�0S = �0

⇥̄⇥ � ⇥†S†�0S⇥ = ⇥†�0⇥ = ⇥̄⇥

�̄�

�̄�

⇥̄⇥ � (⇥†S†
P �0)(SP ⇥) = ⇥†�0�0�0⇥ = ⇥†�0⇥ = ⇥̄⇥

    doesn’t change sign under parity 
it is a Lorentz scalar

�̄�

homework



The γ5 operator

• Define the operator γ5 as:


• It anticommutes with all the other γ matrices:


• use the canonical anti-commutation relations to move γµ to the other 
side


• γµ will anti-commute with for µ≠ν

• γµ will commute when µ=ν 

• We can then consider the quantity

• Show in homework that this is invariant under Loretnz transformation.


• What about under parity:

�5 = i�0�1�2�3

�
0 1
1 0

⇥

�
�µ, �5

⇥
= 0

⇥̄�5⇥

⇥̄�5⇥ ⇥ (⇥†S†
P )�0�5(SP ⇥) = �(⇥†S†

P )�0SP �5⇥ = �⇥†�0�5⇥ = �⇥̄�5⇥

        is a pseudoscalar⇥̄�5⇥



Other Combinations

• We can use γµ to make vectors and tensor quantities:


• You can tell the transformation properties by looking at the Lorentz indices

• γ5 introduces a sign (adds a “pseudo”)

• Every combination of ψ*iψj is a linear combination of the above.


• We will see that the above are the basis for creating interactions with Dirac 
particles. Interactions will be classified as “vector” or “pseudovector”, etc.

⇤̄⇤ scalar 1 component
⇤̄�5⇤ pseudoscalar 1 component
⇤̄�µ⇤ vector 4 components
⇤̄�µ�5⇤ pseudovector 4 components
⇤̄⇥µ⇥⇤ antisymmetric tensor 6 components ⇥µ⇥ =

i

2
(�µ�⇥ � �⇥�µ)



Angular Momentum and the Dirac Equation:

• Conservation:

• In quantum mechanics, what is the condition for a quantity to be 

conserved?


• Free particle Hamiltonian in non-relativistic quantum mechanics:


• thus we conclude that the momentum p is conserved

• If we introduce a potential:


• thus, momentum is not conserved

[H, Q] = 0

H =
p2

2m
[H, p] = [

p2

2m
, p] =

1
2m

[p2, p] = 0

[H, p] = [
p2

2m
+ V (x), p] =

1
2m

[p2 + V (x), p] �= 0



Hamiltonian for the Dirac Particle:

• Starting with the Dirac equation, 


• determine the Hamiltonian by solving for the energy


• Hints:


• Answer:

(�µpµ �mc)⇥ = 0

(�0)2 = 0

H = c�0 (� · p + mc)



Is orbital angular momentum conserved?

• We want to evaluate


• Recall:


• which parts do not commute?


•   


�L = �x� �p

[H, �L]

H = c�0 (� · p + mc) H = c�0
�
⇥ab�

apb + mc
�

[c�0⇥ab�
apb, ⇤ijkxjpk] [mc, �ijkxjpk]

c�0⇥ab⇤ijk[pb, xjpk]

Li = �ijkxjpk

[H,Li] = [c�0
�
⇥ab�

apb + mc
�
, ⇤ijkxjpk]

[A,BC] = [A,B]C + B[A,C]

c⇥ab⇤ijk�0�a(�i�⇥bjpk) �i�c�0⇥ijk�jpk �i�c�0(⇥� � ⇥p)

Orbital angular momentum is not conserved



Spin

• Consider the operator:                                       acting on Dirac spinors

• Note that it satisfies all the properties of an angular momentum operator.

• Let’s consider the commutator of this with the hamiltonian


• once again, consider in component/index notation


• which part doesn’t commute?
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2
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apb + �0mc,⌃i]

~c
2
[�0~� · ~p+ �0mc, ~⌃]



Putting it together:

�c

2
⇥abp

b�0[�a,�i]
�c

2
⇥abp

b�0⇤aij�
j �c

2
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[H, ⇥S] =
�c

2
�0(⇥� � ⇥p)



The “total” spin operator:

• Define the operator:


• Calculate its eigenvalue for an arbitrary Dirac spinor:


• If the eigenvalue of the operator gives s(s+1), where s is the spin, what is 
the spin of a Dirac particle?

S2 = S · S S =
�
2
� =

�
� 0
0 �

⇥



The Photon
• Apart from        we need some other particle/object with definite Lorentz 

transformation properties to make Lorentz invariants

• We will learn later that      will make the mass term for the particle.

• What would we do with the “vector” term            to get a Lorentz 

scalar?

• Recall the photon:


• Classically, we have Maxwell’s equations:


• Recall that we can re-express the Maxwell equations using potentials:


• these can in turn be combined to make a 4 vector:

• Likewise for the “source” terms ρ and J: 

�̄�

�̄�

⇥̄�µ⇥

⌅ · E = 4�⇥ ⌅ · B = 0

⌅⇤E +
1
c
Ḃ = 0 ⌅⇤B� 1

c
Ė =

4�

c
J

E = �⇥�

Aµ = (�,A)
Jµ = (c�,J)

B = ⇥�A



Maxwell’s Equation in Lorentz Covariant Form
• All four equations can be expressed as:


• The issue is that A is (far) from unique:

• Consider:


• the last term is zero, so this new Aµ is also a solution to Maxwell’s 
solution


• they are physically the same, so we can make some conventions:

• “Lorentz gauge condition”:

• “Coulomb gauge”

⇥µ⇥µA⇥ � ⇥⇥(⇥µAµ) =
4�

c
J⇥

Aµ � Aµ + ⇥µ�

�µAµ = 0

A0 = 0

⇥µ⇥µA⇥ =
4�

c
J⇥

⇥ · A = 0

⇥µ⇥µ(A� + ⇥��)� ⇥�(⇥µ(Aµ + ⇥µ�) =
⇥µ⇥µA� � ⇥�(⇥µ(Aµ) + ⇥µ⇥µ⇥��� ⇥�⇥µ⇥µ�

Fµ⇥ = �µA⇥ � �⇥Aµ =
�

⇧⇧⇤

0 �Ex �Ey �Ez

Ex 0 �Bz By

Ey Bz 0 �Bx

Ez �By Bx 0

⇥

⌃⌃⌅



Solutions to the Maxwell Equation in Free Space:

• “Free” means no sources (charges, currents): Jµ=0

• Find solution as usual by guessing:


• Now check:


• Conclusions:

• Photon is massless

• Polarization ε is transverse to photon direction: 


• it has two degrees of freedom/polarizations

�µ�µA⇥ = 0

Aµ(x) = a e�ip·x�µ(p)

⇥µA⇥(x) = �ipµ a e�ip·x�⇥(p)

⇥µ⇥µA⇥(x) = (�i)2pµpµ a e�ip·x�⇥(p) = 0 p2 = m2c2 = 0

A0 = 0� �0 = 0

⇥µAµ = 0� pµ�µ(p) = 0

⇥ p · � = 0



A second look at Dirac spinors

• “s” labels the spin states (remember that there were two for electrons/
positrons)


• The exponential term sets the space/time = energy/momentum

• Let’s look at the “spinor” part u,v which determines the “Dirac structure”:


• If we insert ψ into the Dirac equation, we get:


• If we take the adjoint of these equations, we get:

�(x) = ae�(i/�)p·x us(p) �(x) = ae(i/�)p·x vs(p)
electrons positrons

(i��µ⇤µ �mc)⇥ = 0⇥ (�µpµ �mc)⇥ = 0⇥ (�µpµ �mc)us(p) = 0

(i��µ⇤µ �mc)⇥ = 0⇥ (��µpµ �mc)⇥ = 0⇥ (�µpµ + mc)vs(p) = 0
sometimes called “momentum space Dirac equations”

ūs(�µpµ �mc) = 0 v̄s(�µpµ + mc) = 0


