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Lorentz Properties:

* The Dirac equation “works” in all reference frames.
» What exactly does this mean? "Lorentz Covariant”
thy" 0, —me 1y =0
* I, A, m and c are constants that don’t change with reference frames.

- Jyand y will change with reference frames, however.

* 04 IS a derivative that will be taken with respect to the space-time
coordinates in the new reference frame. We’ll call this 0,

- how does y change?
- Y’ = Sy where y’is the spinor in the new reference frame

« Putting this together, we have the following transformation of the equation
when evaluating it in a new reference frame
ihy" 0, —mep =0 = ihy“@lbw’ —mec =0

What properties does S need to ihy" 0/, (Sv) — me (S¢) = 0
make this work?



Transformation of derivatives

+ Since we know how to relate space time coordinates in one reference with
another (i.e. Lorentz transformation), we can do the same for the
derivatives

» Using the chain rule, we get: (% = 88 ;T g)’x’// aa
TH THh Ox¥

» where we view x as a function x’ (i.e. the original coordinates as a
function of the transformed or primed coordinates).

« Note the summation over v

- if the primed coordinates moving along the x axis with velocity /fc:

a 0
B = (2 + fa¥) v=01u=0)= 5 =7
7l 'y(xl’ —I—ﬁZCOI) 330
72 2 Ox
ZBS — ZBSI (V — 07lu‘ — 1) = 8331/ — ,yﬁ



Transforming the Dirac Equation:
ihy" 0, —mep =0 = iﬁv“ﬁ,ﬁw’ —mc =0

ihy" 0, (Sv) — me (S¢) = 0
ox”
Oxh

S is constant in space time, so we can
move it to the left of the derivatives

oxY

OxH!

iy =8, (S¥) — me (Sv) = 0

1hy" S

0, —me (SY) =0

Now slap S from both sides
oxrY

OxH'
Since these equations must be the same, S must satisfy
oxY

oxH/

ihy" 0y —me =0 SV — iy S =8, — me St = 0

v =8714"S



—xample: The parity operator

* For the parity operator, we want to invert the spatial coordinates while

keeping the time coordinate unchanged:

/(1 0 0 o) Y% _
p_| 0 -1 0 o0 Ox/
1 0 0 -1 0 o5
\0 0 0 -1) =1
* We then have Recalling
a 1%
A0 =871408 V=SS D!
,yl _ —5_1715 i | 0
72 =—-5"1°S 7= ( 0 —1 >
’yg p— —S_lfYSS (/70)2 — 1

855‘1 _
8513'1/
(9333 _ 9
85133’

We find that yY satisfies our needs

,yO:,YO,YO,yO:,YO
0.2_.0
’Y——’Y’Y’Y —’Y’Y’Y—’Y



“Bilinear Covariants”

* We can now study the Lorentz transformation properties of Dirac fields

* Recall that for four vectors a*, b*
- a4, b* transform as Lorentz vectors (obviously)

* ab,is a scalar (does not change under Lorentz transformations

- a'b is a tensor (each has a Lorentz transformation)

* From the previous discussion, we know:
* Dirac spinors have four components, but don’t transform as Lorentz
vectors

- How do combinations of Dirac spinors change under Lorentz
Transformations?



How do we construct a scalar?

- We can use y°: define: 9 = 114" homework

- We can also show generally that ST4%S = ~Y
- This gives us Yy = TST428y = T~ = Y
« so this is a Lorentz scalar (possibly a pseudo scalar)

- We can construct the parity operator to check how Y1) transforms under
the parity operation.

- Recall Sp =0

- We can investigate how % transforms under parity

P = (WTSEA0)(Spy) = 1707040 = ¢iy%y = ¢y

) doesn’t change sign under parity
it is a Lorentz scalar



The y> operator

- Define the operator y° as: ( 0 1 )
v =ty b0
- It anticommutes with all the other y matrices:
"7} =0
- use the canonical anti-commutation relations to move y* to the other
side
 y* will anti-commute with for pzv

* v* will commute when pu=v

- We can then consider the quantity v°%
« Show in homework that this is invariant under Loretnz transformation.

- What about under parity:
07 = (D1SE)1 7 (SpY) = —(WTSp) Spr "t = =170 = =Py

@5751& is a pseudoscalar



Other Combinations

- We can use y* to make vectors and tensor quantities:

Yy scalar 1 component

1275@& pseudoscalar 1 component

Yy vector 4 components

@Qw“v%b pseudovector 4 components ;

otV antisymmetric tensor 6 components ot = —(yFY —A4YyH)

2

 You can tell the transformation properties by looking at the Lorentz indices
- v> introduces a sign (adds a “pseudo”)
- Every combination of y*yj; is a linear combination of the above.

- We will see that the above are the basis for creating interactions with Dirac
particles. Interactions will be classified as “vector” or “pseudovector”, etc.



Angular Momentum and the Dirac Equation:

« Conservation:

* In quantum mechanics, what is the condition for a quantity to be

conserved?
H,Q|=0
* Free particle Hamiltonian in non-relativistic guantum mechanics:
2 2
p p 1y
o~ Hpl =15 —pl =5 p7 7l

* thus we conclude that the momentum p is conserved

* If we introduce a potential:

2

Hop) = [+ V(@).p) = o 7" + V(@).] #0

* thus, momentum is not conserved



Hamiltonian for the Dirac Particle:

» Starting with the Dirac equation,
(V*pp — me)yp =0
 determine the Hamiltonian by solving for the energy

* Hints:

(°)* =0

* Answer: H = ¢y’ (y-p + mc)



s orbital angular momentum conserved”?

—

- We want to evaluate [H, L]

- Recall: [ = Z x D L; = Eijkxjpk
H=cy (v -p+mc) H = /" (6apy“p" + mc)
[H, L;) = [¢7° (8apy*p" + mc) , €527 p"]
* which parts do not commute?
[0705ab7apba €ijk517jpk] ime, Gijkwjpk]
Y Sapeijnp’, 27 p~] [A, BC| = [A, B]C + B[A,C]
c5abeijk70va(—ih5bjpk) —ihc’yoeijkvjpk —ihery? (4 X p)

Orbital angular momentum is not conserved



Spin

. . hs h({ & 0
Consider the operators = 52 =5 ( 0 7

Note that it satisfies all the properties of an angular momentum operator.

) acting on Dirac spinors

Let’s consider the commutator of this with the hamiltonian H = ¢y° (v - p + mc¢)

he. . _ -
E[vov-ervomc, )

once again, consider in component/index notation
hc

[H, 5% = = [1°0a"p" +7°me, ¥

which part doesn’t commute?
h_c
2

he b 0 - 0 o“ o' 0
Y % -

0 [O'a,O'z'] . O g eaijfyj
o0 0 ¥\ —ol 0

5abpb[fyofya7 ZZ] [AB, O] — [A, C]B —+ A[B, O]



Putting it together:

he 0
5 9aop" [, 2]



The “total” spin operator:

 Define the operator:

h o 0
2 — Y =
S“=8S-8S S 22 (O U)

» Calculate its eigenvalue for an arbitrary Dirac spinor:

* If the eigenvalue of the operator gives s(s+1), where s is the spin, what is
the spin of a Dirac particle?



The Photon

« Apart from Y1) we need some other particle/object with definite Lorentz
transformation properties to make Lorentz invariants

. We will learn later that ¥%will make the mass term for the particle.

- What would we do with the “vector” term Y"1 to get a Lorentz
scalar?

* Recall the photon:
» Classically, we have Maxwell’s equations:
V-E=4mp V-B=0

].o 1' 4:
VXxE+-B=0 VxB-_-E=-J
C C C

- Recall that we can re-express the Maxwell equations using potentials:
E=-V¢ B=VxA
- these can in turn be combined to make a 4 vector: A* = (¢, A)

- Likewise for the “source” terms p and J: JH = (cp,J)



Maxwell’s Equation in Lorentz Covariant Form

- All four equations can be expressed as: ['#Y = gt AY — gV A* =

1% 1% . 47T 1%
0,0"A” — 0" (0,A") = 7J ( 0 _E.
* The issue is that A is (far) from unique: E, 0
» Consider: A, — A, + 9, A \ ]—gy Bé
z Py

0, 0"(AY + 9V ) — O (9, (A" + OH)\) =

-E,
— B,
0
By

—E,
B, \

~B,
0

0, 0" AY — ¥ (0, (AM) + 8,01 0" X — 0", 01\

- the last term is zero, so this new A, is also a solution to Maxwell’s

solution

» they are physically the same, so we can make some conventions:

4
» “Lorentz gauge condition”: 9, A* =0 0,0"AY = iy
C

« “Coulomb gauge” A% =0 V-A=0



Solutions to the Maxwell Equation in Free Space:

- “Free” means no sources (charges, currents): J*=0 0*9,A4" =0
 Find solution as usual by guessing:
A (x) = a e P et (p)

 Now check:

0, A" (z) = —ip, a e P (p) 0, A" =0=p,e(p) =0
949, A" () = (=i/p"p, a eI (p) =0 PR = mi =
AY=0=¢€" =0
= p-e=

- Conclusions:
« Photon is massless
 Polarization ¢ is transverse to photon direction:

* it has two degrees of freedom/polarizations



A second look at Dirac spinors

electrons positrons
Y(x) = ae” VP 2 (p) Y(x) = aelMPT v (p)
» “s” labels the spin states (remember that there were two for electrons/
positrons)
* The exponential term sets the space/time = energy/momentum
* Let’s look at the “spinor” part u,v which determines the “Dirac structure”:
- If we insert y into the Dirac equation, we get:
(ehy# 0, — me)yp =0 = (Y'p, — me)yY =0 = (v'p, — mec)u’(p) =0
(ihy" 0y — me)p = 0 = (="'py —me)y =0 = (v'pu +me)v*(p) =0

sometimes called “momentum space Dirac equations”

* If we take the adjoint of these equations, we get:
w (y*pp —me) =0 0" (7'pu +me) =0



