Lecture 13: Properties of the Dirac Equation

H. A. Tanaka

Lorentz Properties:

- The Dirac equation "works" in all reference frames.
- What exactly does this mean?
"Lorentz Covariant"

$$
i \hbar \gamma^{\mu} \partial_{\mu} \psi-m c \psi=0
$$

- i, \hbar, m and c are constants that don't change with reference frames.
- ∂_{μ} and ψ will change with reference frames, however.
- ∂_{μ} is a derivative that will be taken with respect to the space-time coordinates in the new reference frame. We'll call this $\partial^{\prime}{ }_{\mu}$
- how does ψ change?
- $\psi^{\prime}=S \psi$ where ψ^{\prime} is the spinor in the new reference frame
- Putting this together, we have the following transformation of the equation when evaluating it in a new reference frame

$$
i \hbar \gamma^{\mu} \partial_{\mu} \psi-m c \psi=0 \quad \Rightarrow \quad i \hbar \gamma^{\mu} \partial_{\mu}^{\prime} \psi^{\prime}-m c \psi^{\prime}=0
$$

What properties does S need to

$$
i \hbar \gamma^{\mu} \partial_{\mu}^{\prime}(S \psi)-m c(S \psi)=0
$$

make this work?

Transformation of derivatives

- Since we know how to relate space time coordinates in one reference with another (i.e. Lorentz transformation), we can do the same for the derivatives
- Using the chain rule, we get: $\partial_{\mu}^{\prime} \equiv \frac{\partial}{\partial x^{\mu^{\prime}}}=\frac{\partial x^{\nu}}{\partial x^{\mu \prime}} \frac{\partial}{\partial x^{\nu}}$
- where we view x as a function x' (i.e. the original coordinates as a function of the transformed or primed coordinates).
- Note the summation over v
- if the primed coordinates moving along the x axis with velocity $\beta \mathrm{c}$:

$$
\begin{array}{ll}
x^{0}=\gamma\left(x^{0 \prime}+\beta x^{1 \prime}\right) & (\nu=0, \mu=0) \Rightarrow \frac{\partial x^{0}}{\partial x^{0 \prime}}=\gamma \\
x^{1}=\gamma\left(x^{1 \prime}+\beta x^{0 \prime}\right) & \\
x^{2}=x^{2 \prime} & (\nu=0, \mu=1) \Rightarrow \frac{\partial x^{0}}{\partial x^{1 \prime}}=\gamma \beta
\end{array}
$$

etc.

Transforming the Dirac Equation:

$$
\begin{aligned}
& i \hbar \gamma^{\mu} \partial_{\mu} \psi-m c \psi=0 \quad i \hbar \gamma^{\mu} \partial_{\mu}^{\prime} \psi^{\prime}-m c \psi^{\prime}=0 \\
& i \hbar \gamma^{\mu} \partial_{\mu}^{\prime}(S \psi)-m c(S \psi)=0 \\
& i \hbar \gamma^{\mu} \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}} \partial_{\nu}(S \psi)-m c(S \psi)=0 \\
& \text { S is constant in space time, so we can } \\
& \text { move it to the left of the derivatives } \\
& i \hbar \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu \prime}} \partial_{\nu} \psi-m c(S \psi)=0 \\
& i \hbar \gamma^{\nu} \partial_{\nu} \psi-m c \psi=0 \text { Now slap } S^{-1} \text { from both sides } \\
& S^{-1} \rightarrow i \hbar \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}} \partial_{\nu} \psi-m c S \psi=0
\end{aligned}
$$

Since these equations must be the same, S must satisfy

$$
\gamma^{\nu}=S^{-1} \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu \prime}}
$$

Example: The parity operator

- For the parity operator, we want to invert the spatial coordinates while keeping the time coordinate unchanged:

$$
P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \quad \begin{array}{ll}
\frac{\partial x_{0}}{\partial x_{0}^{\prime}}=1 \\
\frac{\partial x_{2}}{\partial x_{2}^{\prime}}=-1
\end{array}
$$

- We then have
$\gamma^{0}=S^{-1} \gamma^{0} S$
$\gamma^{1}=-S^{-1} \gamma^{1} S$
$\gamma^{2}=-S^{-1} \gamma^{2} S$
$\gamma^{3}=-S^{-1} \gamma^{3} S$

Recalling

$$
\begin{aligned}
& \gamma^{\nu}=S^{-1} \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}} \\
& \gamma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \left(\gamma^{0}\right)^{2}=1
\end{aligned}
$$

We find that γ^{0} satisfies our needs

$$
\begin{aligned}
& \gamma^{0}=\gamma^{0} \gamma^{0} \gamma^{0}=\gamma^{0} \\
& \gamma^{i}=-\gamma^{0} \gamma^{i} \gamma^{0}=\gamma^{0} \gamma^{0} \gamma^{i}=\gamma^{i}
\end{aligned}
$$

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \Rightarrow \gamma^{0} \gamma^{i}=-\gamma^{i} \gamma^{0} \quad S_{P}=\gamma^{0}
$$

"Bilinear Covariants"

- We can now study the Lorentz transformation properties of Dirac fields
- Recall that for four vectors a^{μ}, b^{μ}
- a^{μ}, b^{μ} transform as Lorentz vectors (obviously)
- $a^{\mu} b_{\mu}$ is a scalar (does not change under Lorentz transformations
- $a^{\mu} b^{v}$ is a tensor (each has a Lorentz transformation)
- From the previous discussion, we know:
- Dirac spinors have four components, but don't transform as Lorentz vectors
- How do combinations of Dirac spinors change under Lorentz Transformations?

How do we construct a scalar?

- We can use γ^{0} : define: $\bar{\psi}=\psi^{\dagger} \gamma^{0}$ homework
- We can also show generally that $S^{\dagger} \gamma^{0} S=\gamma^{0}$
- This gives us $\bar{\psi} \psi \Rightarrow \psi^{\dagger} S^{\dagger} \gamma^{0} S \psi=\psi^{\dagger} \gamma^{0} \psi=\bar{\psi} \psi$
- so this is a Lorentz scalar (possibly a pseudo scalar)
- We can construct the parity operator to check how $\bar{\psi} \psi$ transforms under the parity operation.
- Recall $\mathrm{S}_{\mathrm{P}}=\gamma^{0}$
- We can investigate how $\bar{\psi} \psi$ transforms under parity

$$
\bar{\psi} \psi \Rightarrow\left(\psi^{\dagger} S_{P}^{\dagger} \gamma^{0}\right)\left(S_{P} \psi\right)=\psi^{\dagger} \gamma^{0} \gamma^{0} \gamma^{0} \psi=\psi^{\dagger} \gamma^{0} \psi=\bar{\psi} \psi
$$

$\bar{\psi} \psi$ doesn't change sign under parity it is a Lorentz scalar

The γ^{5} operator

- Define the operator γ^{5} as:

$$
\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \quad\left(\begin{array}{ll}
1 & 0
\end{array}\right)
$$

- It anticommutes with all the other γ matrices:

$$
\left\{\gamma^{\mu}, \gamma^{5}\right\}=0
$$

- use the canonical anti-commutation relations to move γ^{μ} to the other side
- γ^{μ} will anti-commute with for $\mu \neq \nu$
- γ^{μ} will commute when $\mu=\nu$
- We can then consider the quantity $\bar{\psi} \gamma^{5} \psi$
- Show in homework that this is invariant under Loretnz transformation.
- What about under parity:
$\bar{\psi} \gamma^{5} \psi \Rightarrow\left(\psi^{\dagger} S_{P}^{\dagger}\right) \gamma^{0} \gamma^{5}\left(S_{P} \psi\right)=-\left(\psi^{\dagger} S_{P}^{\dagger}\right) \gamma^{0} S_{P} \gamma^{5} \psi=-\psi^{\dagger} \gamma^{0} \gamma^{5} \psi=-\bar{\psi} \gamma^{5} \psi$
$\bar{\psi} \gamma^{5} \psi$ is a pseudoscalar

Other Combinations

- We can use γ^{μ} to make vectors and tensor quantities:

$\bar{\psi} \psi$	scalar	1 component	
$\bar{\psi} \gamma^{5} \psi$	pseudoscalar	1 component	
$\bar{\psi} \gamma^{\mu} \psi$	vector	4 components	
$\bar{\psi} \gamma^{\mu} \gamma^{5} \psi$	pseudovector	4 components	
$\bar{\psi} \sigma^{\mu \nu} \psi$	antisymmetric tensor	6 components	$\sigma^{\mu \nu}=\frac{i}{2}\left(\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu} \gamma^{\mu}\right)$

- You can tell the transformation properties by looking at the Lorentz indices
- γ^{5} introduces a sign (adds a "pseudo")
- Every combination of $\psi^{*} i \psi_{\mathrm{j}}$ is a linear combination of the above.
- We will see that the above are the basis for creating interactions with Dirac particles. Interactions will be classified as "vector" or "pseudovector", etc.

Angular Momentum and the Dirac Equation:

- Conservation:
- In quantum mechanics, what is the condition for a quantity to be conserved?

$$
[H, Q]=0
$$

- Free particle Hamiltonian in non-relativistic quantum mechanics:

$$
H=\frac{p^{2}}{2 m} \quad[H, p]=\left[\frac{p^{2}}{2 m}, p\right]=\frac{1}{2 m}\left[p^{2}, p\right]=0
$$

- thus we conclude that the momentum p is conserved
- If we introduce a potential:

$$
[H, p]=\left[\frac{p^{2}}{2 m}+V(x), p\right]=\frac{1}{2 m}\left[p^{2}+V(x), p\right] \neq 0
$$

- thus, momentum is not conserved

Hamiltonian for the Dirac Particle:

- Starting with the Dirac equation,

$$
\left(\gamma^{\mu} p_{\mu}-m c\right) \psi=0
$$

- determine the Hamiltonian by solving for the energy
- Hints:

$$
\left(\gamma^{0}\right)^{2}=0
$$

- Answer: $H=c \gamma^{0}(\gamma \cdot \mathbf{p}+m c)$

Is orbital angular momentum conserved?

- We want to evaluate $[H, \vec{L}]$
- Recall: $\vec{L}=\vec{x} \times \vec{p}$

$$
H=c \gamma^{0}(\gamma \cdot \mathbf{p}+m c)
$$

$$
\begin{aligned}
L_{i} & =\epsilon_{i j k} x^{j} p^{k} \\
H & =c \gamma^{0}\left(\delta_{a b} \gamma^{a} p^{b}+m c\right)
\end{aligned}
$$

$$
\left[H, L_{i}\right]=\left[c \gamma^{0}\left(\delta_{a b} \gamma^{a} p^{b}+m c\right), \epsilon_{i j k} x^{j} p^{k}\right]
$$

- which parts do not commute?

$$
\begin{array}{cl}
{\left[c \gamma^{0} \delta_{a b} \gamma^{a} p^{b}, \epsilon_{i j k} x_{j} p_{k}\right]} & {\left[m c, \epsilon_{i j k} x_{j} p_{k}\right]} \\
c \gamma^{0} \delta_{a b} \epsilon_{i j k}\left[p^{b}, x^{j} p^{k}\right] & {[A, B C]=[A, B] C+B[A, C]} \\
c \delta_{a b} \epsilon_{i j k} \gamma^{0} \gamma^{a}\left(-i \hbar \delta^{b j} p^{k}\right) & -i \hbar c \gamma^{0} \epsilon_{i j k} \gamma^{j} p^{k}
\end{array}-i \hbar c \gamma^{0}(\vec{\gamma} \times \vec{p}) \quad .
$$

Orbital angular momentum is not conserved

Spin

- Consider the operator $\vec{S}=\frac{\hbar}{2} \vec{\Sigma}=\frac{\hbar}{2}\left(\begin{array}{cc}\vec{\sigma} & 0 \\ 0 & \vec{\sigma}\end{array}\right) \quad$ acting on Dirac spinors
- Note that it satisfies all the properties of an angular momentum operator.
- Let's consider the commutator of this with the hamiltonian $H=c \gamma^{0}(\gamma \cdot \mathbf{p}+m c)$

$$
\frac{\hbar c}{2}\left[\gamma^{0} \vec{\gamma} \cdot \vec{p}+\gamma^{0} m c, \vec{\Sigma}\right]
$$

- once again, consider in component/index notation

$$
\left[H, S^{i}\right]=\frac{\hbar c}{2}\left[\gamma^{0} \delta_{a b} \gamma^{a} p^{b}+\gamma^{0} m c, \Sigma^{i}\right]
$$

- which part doesn't commute?

$$
\left.\begin{array}{ll}
\frac{\hbar c}{2} \delta_{a b} p^{b}\left[\gamma^{0} \gamma^{a}, \Sigma^{i}\right] & {[A B, C]=[A, C] B+A[B, C]} \\
\frac{\hbar c}{2} \delta_{a b} p^{b} \gamma^{0}\left[\gamma^{a}, \Sigma^{i}\right] & {\left[\left(\begin{array}{cc}
0 & \sigma^{a} \\
-\sigma^{a} & 0
\end{array}\right),\left(\begin{array}{cc}
\sigma^{i} & 0 \\
0 & \sigma^{i}
\end{array}\right)\right]} \\
& \left(\begin{array}{cc}
0 & {\left[\sigma_{a}, \sigma_{i}\right]} \\
-\left[\sigma^{a}, \sigma_{i}\right] & 0
\end{array}\right) \quad \epsilon_{a i j}\left(\begin{array}{cc}
0 & \sigma_{j} \\
-\sigma^{j} & 0
\end{array}\right)
\end{array} \epsilon_{a i j} \gamma^{j}\right)
$$

Putting it together:

$$
\begin{gathered}
\frac{\hbar c}{2} \delta_{a b} p^{b} \gamma^{0}\left[\gamma^{a}, \Sigma^{i}\right] \quad \frac{\hbar c}{2} \delta_{a b} p^{b} \gamma^{0} \epsilon_{a i j} \gamma^{j} \frac{\hbar c}{2} p^{b} \gamma^{0} \epsilon_{b i j} \gamma^{j} \\
{[H, \vec{S}]=\frac{\hbar c}{2} \gamma^{0}(\vec{\gamma} \times \vec{p})}
\end{gathered}
$$

The "total" spin operator:

- Define the operator:

$$
\mathbf{S}^{2}=\mathbf{S} \cdot \mathbf{S} \quad \mathbf{S}=\frac{\hbar}{2} \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\sigma & 0 \\
0 & \sigma
\end{array}\right)
$$

- Calculate its eigenvalue for an arbitrary Dirac spinor:
- If the eigenvalue of the operator gives $s(s+1)$, where s is the spin, what is the spin of a Dirac particle?

The Photon

- Apart from $\bar{\psi} \psi$ we need some other particle/object with definite Lorentz transformation properties to make Lorentz invariants
- We will learn later that $\bar{\psi} \psi_{\text {will }}$ make the mass term for the particle.
- What would we do with the "vector" term $\bar{\psi} \gamma^{\mu} \psi$ to get a Lorentz scalar?
- Recall the photon:
- Classically, we have Maxwell's equations:

$$
\begin{array}{cc}
\nabla \cdot \mathbf{E}=4 \pi \rho & \nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{E}+\frac{1}{c} \dot{\mathbf{B}}=0 & \nabla \times \mathbf{B}-\frac{1}{c} \dot{\mathbf{E}}=\frac{4 \pi}{c} \mathbf{J}
\end{array}
$$

- Recall that we can re-express the Maxwell equations using potentials:

$$
\mathbf{E}=-\nabla \phi \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

- these can in turn be combined to make a 4 vector: $A^{\mu}=(\phi, \mathbf{A})$
- Likewise for the "source" terms ρ and J:

$$
J^{\mu}=(c \rho, \mathbf{J})
$$

Maxwell's Equation in Lorentz Covariant Form

- All four equations can be expressed as: $\quad F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}=$

$$
\partial_{\mu} \partial^{\mu} A^{\nu}-\partial^{\nu}\left(\partial_{\mu} A^{\mu}\right)=\frac{4 \pi}{c} J^{\nu}
$$

- The issue is that A is (far) from unique:
- Consider: $A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \lambda$

$$
\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

$\partial_{\mu} \partial^{\mu}\left(A^{\nu}+\partial^{\nu} \lambda\right)-\partial^{\nu}\left(\partial_{\mu}\left(A^{\mu}+\partial^{\mu} \lambda\right)=\right.$

$$
\partial_{\mu} \partial^{\mu} A^{\nu}-\partial^{\nu}\left(\partial_{\mu}\left(A^{\mu}\right)+\partial_{\mu} \partial^{\mu} \partial^{\nu} \lambda-\partial^{\nu} \partial_{\mu} \partial^{\mu} \lambda\right.
$$

- the last term is zero, so this new A_{μ} is also a solution to Maxwell's solution
- they are physically the same, so we can make some conventions:
- "Lorentz gauge condition": $\partial_{\mu} A^{\mu}=0$
-"Coulomb gauge"

$$
A^{0}=0
$$

$$
\begin{aligned}
\partial_{\mu} \partial^{\mu} A^{\nu} & =\frac{4 \pi}{c} J^{\nu} \\
\nabla \cdot \mathbf{A} & =0
\end{aligned}
$$

Solutions to the Maxwell Equation in Free Space:

- "Free" means no sources (charges, currents): $J^{\mu}=0 \quad \partial^{\mu} \partial_{\mu} A^{\nu}=0$
- Find solution as usual by guessing:

$$
A^{\mu}(x)=a e^{-i p \cdot x} \epsilon^{\mu}(p)
$$

- Now check:

$$
\begin{array}{ll}
\partial_{\mu} A^{\nu}(x)=-i p_{\mu} a e^{-i p \cdot x} \epsilon^{\nu}(p) & \partial_{\mu} A^{\mu}=0 \Rightarrow p_{\mu} \epsilon^{\mu}(p)=0 \\
\partial^{\mu} \partial_{\mu} A^{\nu}(x)=(-i)^{2} p^{\mu} p_{\mu} a e^{-i p \cdot x} \epsilon^{\nu}(p)=0 & p^{2}=m^{2} c^{2}=0 \\
& A^{0}=0 \Rightarrow \epsilon^{0}=0 \\
& \Rightarrow \mathbf{p} \cdot \epsilon=0
\end{array}
$$

- Conclusions:
- Photon is massless
- Polarization ε is transverse to photon direction:
- it has two degrees of freedom/polarizations

A second look at Dirac spinors

$$
\begin{gathered}
\text { electrons } \\
\psi(x)=a e^{-(i / \hbar) p \cdot x} u^{s}(p)
\end{gathered}
$$

$$
\begin{gathered}
\text { positrons } \\
\psi(x)=a e^{(i / \hbar) p \cdot x} v^{s}(p)
\end{gathered}
$$

- "s" labels the spin states (remember that there were two for electrons/ positrons)
- The exponential term sets the space/time = energy/momentum
- Let's look at the "spinor" part u,v which determines the "Dirac structure":
- If we insert ψ into the Dirac equation, we get:

$$
\begin{aligned}
& \left(i \hbar \gamma^{\mu} \partial_{\mu}-m c\right) \psi=0 \Rightarrow\left(\gamma^{\mu} p_{\mu}-m c\right) \psi=0 \Rightarrow\left(\gamma^{\mu} p_{\mu}-m c\right) u^{s}(p)=0 \\
& \left(i \hbar \gamma^{\mu} \partial_{\mu}-m c\right) \psi=0 \Rightarrow\left(-\gamma^{\mu} p_{\mu}-m c\right) \psi=0 \Rightarrow\left(\gamma^{\mu} p_{\mu}+m c\right) v^{s}(p)=0
\end{aligned}
$$ sometimes called "momentum space Dirac equations"

- If we take the adjoint of these equations, we get:

$$
\bar{u}^{s}\left(\gamma^{\mu} p_{\mu}-m c\right)=0 \quad \bar{v}^{s}\left(\gamma^{\mu} p_{\mu}+m c\right)=0
$$

