The Dirac Equation

H. A. Tanaka

Relativistic Wave Equations:

- In non-relativistic quantum mechanics, we have the Schrödinger Equation:

$$
\begin{aligned}
\mathbf{H} \psi=i \hbar \frac{\partial}{\partial t} \psi \quad & \mathbf{H}=\frac{\mathbf{p}^{2}}{2 m} \quad \mathbf{p} \Leftrightarrow-i \hbar \nabla \\
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi & =i \hbar \frac{\partial}{\partial t} \psi
\end{aligned}
$$

- Inspired by this, Klein and Gordon (and actually Schrödinger) tried:

$$
E^{2}=p^{2} c^{2}+m^{2} c^{4}=c^{2}\left(-\hbar^{2} \nabla^{2}+m^{2} c^{2}\right) \psi=-\hbar^{2} \frac{\partial^{2}}{\partial t^{2}} \psi
$$

$$
\left(-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}+\nabla^{2}\right) \psi=\frac{m^{2} c^{2}}{\hbar^{2}} \psi
$$

$$
\partial_{\mu}=\left(\partial_{0}, \partial_{1}, \partial_{2}, \partial_{3}\right)=\left(\frac{\partial}{\partial c t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \quad\left(-\hbar^{2} \partial^{\mu} \partial_{\mu}+m^{2} c^{2}\right) \psi=0
$$

Issues with KG and Dirac:

- Within the context of quantum mechanics, this had some issues:
- As it turns out, this allows negative probability densities: $|\psi|^{2}<0$
- Dirac traced this to the fact that we had second-order time derivative
- "factor" the E/p relation to get linear relations and obtained:

$$
p_{\mu} p^{\mu}-m^{2} c^{2}=0 \Rightarrow\left(\alpha^{\kappa} p_{\kappa}+m c\right)\left(\gamma^{\lambda} p_{\lambda}-m c\right)
$$

- and found that:

$$
\begin{aligned}
& \alpha^{\kappa}=\gamma^{\kappa} \\
& \left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}
\end{aligned}
$$

- Dirac found that these relationships could be held by matrices, and that the corresponding wave function must be a "vector".

$$
\gamma^{\mu} p_{\mu}-m c=0 \Rightarrow\left(i \hbar \gamma^{\mu} \partial_{\mu}-m c\right) \psi=0
$$

The Dirac Equation in its many forms:

$(i \hbar \not \partial-m c) \psi=0 \quad \not \subset \equiv a_{\mu} \gamma^{\mu}$
$\left(i \hbar \gamma^{\mu} \partial_{\mu}-m c\right) \psi=0 \quad \not \subset \equiv a_{\mu} \gamma^{\mu}=a_{0} \gamma^{0}-a_{1} \gamma^{1}-a_{2} \gamma^{2}-a_{3} \gamma^{3}$
$\partial_{\mu}=\left(\partial_{0}, \partial_{1}, \partial_{2}, \partial_{3}\right)=\left(\frac{\partial}{\partial c t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
$\left[i \hbar\left(\gamma^{0} \partial_{0}-\gamma^{1} \partial_{1}-\gamma^{2} \partial_{2}-\gamma^{3} \partial_{3}\right)-m c\right] \psi=0$

$$
\left[i \hbar\left(\gamma^{0} \frac{\partial}{\partial c t}-\gamma^{1} \frac{\partial}{\partial x}-\gamma^{2} \frac{\partial}{\partial y}-\gamma^{3} \frac{\partial}{\partial z}\right)-m c\right] \psi=0
$$

Now the "gamma" Matrices:

$$
\begin{aligned}
& \gamma^{\mu}=\left(\gamma^{0}, \gamma^{1}, \gamma^{2}, \gamma^{3}\right) \quad \vec{\sigma}=\left(\sigma^{1}, \sigma^{2}, \sigma^{3}\right)=\left[\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right] \\
& \gamma^{0}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \\
& \gamma^{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right) \\
& \gamma^{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & \sigma^{1} \\
-\sigma^{1} & 0
\end{array}\right) \\
& \text { - Note that this is a particular } \\
& \text { representation of the matrices } \\
& \text { - Any set of matrices satisfying the } \\
& \text { anti-commutation relations works } \\
& \left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \\
& \text { - There are an infinite number of } \\
& \text { possibilities: this particular one } \\
& \text { (Björken-Drell) is just one example }
\end{aligned}
$$

In full glory:

$$
\begin{aligned}
& {\left[i \hbar\left(\begin{array}{cccc}
\frac{\partial}{\partial c t} & 0 & -\frac{\partial}{\partial z} & -\frac{\partial}{\partial x}+i \frac{\partial}{\partial y} \\
0 & \frac{\partial}{\partial t} & -\frac{\partial}{\partial x} i \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial x}-i \frac{\partial}{\partial y} & -\frac{\partial}{\partial c t} & 0 \\
\frac{\partial}{\partial x}+i \frac{\partial}{\partial y} & -\frac{\partial}{\partial z} & 0 & -\frac{\partial}{\partial t}
\end{array}\right)-\left(\begin{array}{cccc}
m c & 0 & 0 & 0 \\
0 & m c & 0 & 0 \\
0 & 0 & m c & 0 \\
0 & 0 & 0 & m c
\end{array}\right)\right]\left(\begin{array}{l}
\psi_{A} \\
\psi_{\psi_{1}} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
\psi_{B} \\
0 \\
0 \\
0
\end{array}\right)} \\
& \left(\begin{array}{cc}
p_{0}-m c & -\mathbf{p} \cdot \sigma \\
\mathbf{p} \cdot \sigma & -p_{0}-m c
\end{array}\right)\binom{\psi_{A}}{\psi_{B}}=0
\end{aligned}
$$

Consider applying another matrix to this equation

$$
\left(\begin{array}{cc}
p_{0}+m c & -\mathbf{p} \cdot \sigma \\
\mathbf{p} \cdot \sigma & -p_{0}+m c
\end{array}\right)\left(\begin{array}{cc}
p_{0}-m c & -\mathbf{p} \cdot \sigma \\
\mathbf{p} \cdot \sigma & -p_{0}-m c
\end{array}\right)=\left(\begin{array}{cc}
p_{0}^{2}-m^{2} c^{2}-(\mathbf{p} \cdot \sigma)^{2} & 0 \\
0 & p_{0}^{2}-m^{2} c^{2}-(\mathbf{p} \cdot \sigma)^{2}
\end{array}\right)
$$

From problem 4.20c

$$
(\sigma \cdot \mathbf{a})(\sigma \cdot \mathbf{b})=\mathbf{a} \cdot \mathbf{b}+i \sigma \cdot(\mathbf{a} \times \mathbf{b}) \quad(\sigma \cdot \mathbf{p})^{2}=\mathbf{p} \cdot \mathbf{p}
$$

- But this is just the KG equation four

$$
\left(\begin{array}{cc}
p_{0}^{2}-\mathbf{p}^{2}-m^{2} c^{2} & 0 \\
0 & p_{0}^{2}-\mathbf{p}^{2}-m^{2} c^{2}
\end{array}\right)\binom{\psi_{A}}{\psi_{B}}=0
$$ times

- Wavefunctions that satisfy the Dirac equation also satisfy KG

Solutions to the Dirac Equation:

- Consider a particle at rest: $\quad \psi(x) \sim e^{-i k \cdot x}=e^{\frac{-i}{\hbar}\left(\frac{E}{c} t-\mathbf{p} \cdot \mathbf{x}\right)}$

$$
k^{\mu}=\frac{1}{\hbar}\left(E / c, p_{x}, p_{y}, p_{z}\right)
$$

- Particle has no spatial dependence, only time dependence.

$$
\begin{aligned}
& \left(i \hbar \gamma^{0} \frac{\partial}{\partial c t}-m c\right) \psi=0 \\
& \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\frac{\partial}{\partial t} \psi_{A}}{\frac{\partial}{\partial t} \psi_{B}}=\frac{-i m c^{2}}{\hbar}\binom{\psi_{A}}{\psi_{B}}
\end{aligned}
$$

- Note that the equation breaks up into two independent parts:

$$
\begin{array}{rlrl}
\frac{\partial}{\partial t} \psi_{A} & =-i \frac{m c^{2}}{\hbar} \psi_{A} & -\frac{\partial}{\partial t} \psi_{B} & =-i \frac{m c^{2}}{\hbar} \psi_{B} \\
\psi_{A}(t) & =e^{-i\left(\frac{m c^{2}}{\hbar}\right) t} \psi_{A}(0) & \psi_{B}(t)=e^{-i\left(-\frac{m c^{2}}{\hbar}\right) t} \psi_{B}(0)
\end{array}
$$

Dirac's Dilemma:

- ψ_{B} appears to have negative energy

$$
\psi_{A}(t)=e^{-i\left(\frac{m c^{2}}{\hbar}\right) t} \psi_{A}(0) \quad \psi_{B}(t)=e^{-i\left(-\frac{m c^{2}}{\hbar}\right) t} \psi_{B}(0)
$$

- Why don't all particles fall down into these states (and down to $-\infty$)?
- Dirac's excuse: all electron states in the universe up to a certain level (say $E=0$) are filled.
- Pauli exclusion prevents collapse of states down to $E=-\infty$
- We can "excite" particles out of the sea into free states

This leaves a "hole" that looks like a particle with opposite properties (positive charge, opposite spin, etc.)

Dirac originally proposed that this might be the proton

Excuse to Triumph

- 1932: Anderson finds "positrons" in cosmic rays
- Exactly like electrons but positively charged:
Fits what Dirac was looking for

Dirac predicts the existence of anti-matter and it is found

$$
\square
$$

Solutions to the Dirac Equation at Rest:

$$
\begin{array}{|ll}
\hline \psi_{1}(t)=e^{-i m c^{2} t / \hbar}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) & \psi_{2}(t)=e^{-i m c^{2} t / \hbar}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
\hline \text { "spin up" } & \text { "spin down" }
\end{array}
$$

positive energy solutions (particle)

$$
\begin{array}{ll}
\psi_{3}(t)=e^{+i m c^{2} t / \hbar} \\
\text { "spin down" } & \left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
\end{array} \quad \psi_{4}(t)=e^{+i m c^{2} t / \hbar}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

"negative" energy solutions (anti-particle)

- Note that all particles have the same mass

Pedagogical Sore Point

- All the discussion we had thus far about difficulties with relativistic equations, (negative probabilities, negative energies) is of historic interest
- Scientifically, the framework for dealing with quantum mechanics and special relativity (i.e. quantum field theory) had not been developed
- The old tools of NR quantum mechanics had reached their limit and new ones were necessary.
- In particular, the idea of a "wavefunction" had to be revisited
- Until this was done, there were many difficulties!
- Once QFT was developed, all of these problems go away.
- Both KG and Dirac Equations are valid in QFT
- No negative probabilities, no negative energies
- Nonetheless, the history and its course are rather interesting.

Plane Wave Solutions to the Dirac Equation:

- Consider a solution of the form:

- and place it in the Dirac equation:

$$
\begin{aligned}
& \left(i \hbar \gamma^{\mu} \partial_{\mu}-m c\right) \psi(x)=0 \\
& \left(\gamma^{\mu} \hbar k_{\mu}-m c\right) e^{-i k \cdot x} u(k)=0 \quad\left(\gamma^{\mu} \hbar k_{\mu}-m c\right) u(k)=0
\end{aligned}
$$

What does this equation look like:

$$
\gamma^{\mu} k_{\mu}=\gamma^{0} k^{0}-\gamma^{1} k^{1}-\gamma^{2} k^{2}-\gamma^{3} k^{3}
$$

- we found this is:
$\left(\begin{array}{cc}k_{0} & -\mathbf{k} \cdot \sigma \\ \mathbf{k} \cdot \sigma & -k_{0}\end{array}\right) \quad$ Note 2×2 notation $\quad u(k) \Rightarrow\binom{u_{A}}{u_{B}}$
- So that the Dirac equation reads:
$\left(\begin{array}{cc}\hbar k_{0}-m c & -\hbar \mathbf{k} \cdot \sigma \\ \hbar \mathbf{k} \cdot \sigma & -\hbar k_{0}-m c\end{array}\right)\binom{u_{A}}{u_{B}}=0$
$\left(\hbar k_{0}-m c\right) u_{A}-\hbar \mathbf{k} \cdot \sigma u_{B}=0$

$$
\hbar \mathbf{k} \cdot \sigma u_{A}-\left(\hbar k_{0}+m c\right) u_{B}=0
$$

$$
\begin{aligned}
& u_{A}=\frac{\hbar \mathbf{k} \cdot \sigma}{\left(\hbar k_{0}-m c\right)} u_{B} \\
& \frac{\hbar \mathbf{k} \cdot \sigma}{\left(\hbar k_{0}+m c\right)} u_{A}=u_{B}
\end{aligned}
$$

Determing u

$$
u_{A}=\frac{\hbar \mathbf{k} \cdot \sigma}{\left(\hbar k_{0}-m c\right)} u_{B} \quad \frac{\hbar \mathbf{k} \cdot \sigma}{\left(\hbar k_{0}+m c\right)} u_{A}=u_{B} \quad \frac{\hbar \mathbf{k} \cdot \sigma}{\left(\hbar k_{0}+m c\right)} \frac{\hbar \mathbf{k} \cdot \sigma}{\left(\hbar k_{0}-m c\right)}=1
$$

- this means we can identify $\hbar k \leftrightarrow p$

$$
\begin{gathered}
\hbar^{2} \mathbf{k}^{2}=\left(\hbar k_{0}\right)^{2}-m^{2} c^{2} \\
\mathbf{p}^{2}=(E / c)^{2}-m^{2} c^{2} \quad\left(p^{0}, \mathbf{p}\right) \Rightarrow\left(\pm \hbar k_{0}, \hbar \mathbf{k}\right)
\end{gathered}
$$

$$
\mathbf{p} \cdot \sigma=\left(\begin{array}{cc}
p_{z} & p_{x}-i p_{y} \\
p_{x}+i p_{y} & -p_{z}
\end{array}\right)
$$

Normalization of the Wavefunction:

- We need to choose a standard "normalization" of the wavefunctions
- Note that multiples of the solutions are still solution
- The normalization convention simply fixes this arbitrary choice:

$$
u^{\dagger} u=2 E / c \quad u^{\dagger} \equiv\left(u^{T}\right)^{*} \quad u=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right) \quad \Rightarrow \quad u^{\dagger}=\left(u_{1}^{*}, u_{2}^{*}, u_{3}^{*} u_{4}^{*}\right)
$$

- for u_{1}

$$
u_{1}^{\dagger} u_{1}=N^{2}\left[1+\frac{\mathbf{p}^{2}}{\left(E+m c^{2}\right)^{2}}\right]=2 E / c \quad N=\sqrt{\left(E+m c^{2}\right) / c}
$$

Lorentz Properties:

- The Dirac equation "works" in all reference frames.
- What exactly does this mean?
"Lorentz Covariant"

$$
i \hbar \gamma^{\mu} \partial_{\mu} \psi-m c \psi=0
$$

- i, \hbar, m and c are constants that don't change with reference frames.
- ∂_{μ} and ψ will change with reference frames, however.
- ∂_{μ} is a derivative that will be taken with respect to the space-time coordinates in the new reference frame. We'll call this $\partial^{\prime}{ }_{\mu}$
- how does ψ change?
- $\psi^{\prime}=S \psi$ where ψ^{\prime} is the spinor in the new reference frame
- Putting this together, we have the following transformation of the equation when evaluating it in a new reference frame

$$
i \hbar \gamma^{\mu} \partial_{\mu} \psi-m c \psi=0 \quad \Rightarrow \quad i \hbar \gamma^{\mu} \partial_{\mu}^{\prime} \psi^{\prime}-m c \psi^{\prime}=0
$$

What properties does S need to

$$
i \hbar \gamma^{\mu} \partial_{\mu}^{\prime}(S \psi)-m c(S \psi)=0
$$

make this work?

The Properties of S

- Since we know how to relate space time coordinates in one reference with another (i.e. Lorentz transformation), we can do the same for the derivatives
- Using the chain rule, we get: $\partial_{\mu}^{\prime} \equiv \frac{\partial}{\partial x^{\mu^{\prime}}}=\frac{\partial x^{\nu}}{\partial x^{\mu \prime}} \frac{\partial}{\partial x^{\nu}}$
- where we view x as a function x' (i.e. the original coordinates as a function of the transformed or primed coordinates).
- Note the summation over v
- if the primed coordinates moving along the x axis with velocity $\beta \mathrm{c}$:

$$
\begin{array}{ll}
x^{0}=\gamma\left(x^{0 \prime}+\beta x^{1 \prime}\right) & (\nu=0, \mu=0) \Rightarrow \frac{\partial x^{0}}{\partial x^{0 \prime}}=\gamma \\
x^{1}=\gamma\left(x^{1 \prime}+\beta x^{0 \prime}\right) & \\
x^{2}=x^{2 \prime} & (\nu=0, \mu=1) \Rightarrow \frac{\partial x^{0}}{\partial x^{1 \prime}}=\gamma \beta
\end{array}
$$

etc.

Transforming the Dirac Equation:

$$
\begin{aligned}
& i \hbar \gamma^{\mu} \partial_{\mu} \psi-m c \psi=0 \quad i \hbar \gamma^{\mu} \partial_{\mu}^{\prime} \psi^{\prime}-m c \psi^{\prime}=0 \\
& i \hbar \gamma^{\mu} \partial_{\mu}^{\prime}(S \psi)-m c(S \psi)=0 \\
& i \hbar \gamma^{\mu} \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}} \partial_{\nu}(S \psi)-m c(S \psi)=0 \\
& \text { S is constant in space time, so we can } \\
& \text { move it to the left of the derivatives } \\
& i \hbar \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu \prime}} \partial_{\nu} \psi-m c(S \psi)=0 \\
& i \hbar \gamma^{\nu} \partial_{\nu} \psi-m c \psi=0 \text { Now slap } S^{-1} \text { from both sides } \\
& S^{-1} \rightarrow i \hbar \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}} \partial_{\nu} \psi-m c S \psi=0
\end{aligned}
$$

Since these equations must be the same, S must satisfy

$$
\gamma^{\nu}=S^{-1} \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu \prime}}
$$

Example: The parity operator

- For the parity operator, we want to invert the spatial coordinates while keeping the time coordinate unchanged:

$$
P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \quad \begin{array}{ll}
\frac{\partial x_{0}}{\partial x_{0}^{\prime}}=1 \\
\frac{\partial x_{2}}{\partial x_{2}^{\prime}}=-1
\end{array}
$$

- We then have
$\gamma^{0}=S^{-1} \gamma^{0} S$
$\gamma^{1}=-S^{-1} \gamma^{1} S$
$\gamma^{2}=-S^{-1} \gamma^{2} S$
$\gamma^{3}=-S^{-1} \gamma^{3} S$

Recalling

$$
\begin{aligned}
& \gamma^{\nu}=S^{-1} \gamma^{\mu} S \frac{\partial x^{\nu}}{\partial x^{\mu^{\prime}}} \\
& \gamma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \left(\gamma^{0}\right)^{2}=1
\end{aligned}
$$

We find that γ^{0} satisfies our needs

$$
\begin{aligned}
& \gamma^{0}=\gamma^{0} \gamma^{0} \gamma^{0}=\gamma^{0} \\
& \gamma^{i}=-\gamma^{0} \gamma^{i} \gamma^{0}=\gamma^{0} \gamma^{0} \gamma^{i}=\gamma^{i}
\end{aligned}
$$

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \Rightarrow \gamma^{0} \gamma^{i}=-\gamma^{i} \gamma^{0} \quad S_{P}=\gamma^{0}
$$

Next time

- Read 7.1-7.4
- I would encourage you to work out the examples in 7.6 yourself explicitly so that you start to gain some fluency with the Feynman rules
- Lots of notation, lots of stuff going on
- please stop by if you have questions!

