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The Dirac Equation	



Relativistic Wave Equations:

• In non-relativistic quantum mechanics, we have the Schrödinger Equation:


• Inspired by this, Klein and Gordon (and actually Schrödinger) tried:
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“Manifestly Lorentz Invariant”
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Issues with KG and Dirac:

• Within the context of quantum mechanics, this had some issues:

• As it turns out, this allows negative probability densities:

• Dirac traced this to the fact that we had second-order time derivative


• “factor” the E/p relation to get linear relations and obtained:


• and found that: 


• Dirac found that these relationships could be held by matrices, and that the 
corresponding wave function must be a “vector”.
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The Dirac Equation in its many forms:
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Now the “gamma” Matrices:

• Note that this is a particular 
representation of the matrices


• Any set of matrices satisfying the 
anti-commutation relations works


• There are an infinite number of 
possibilities: this particular one 
(Björken-Drell) is just one example
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In full glory:
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• But this is just the KG equation four 
times


• Wavefunctions that satisfy the 
Dirac equation also satisfy KG 



Solutions to the Dirac Equation:

• Consider a particle at rest:


• Particle has no spatial dependence, only time dependence.


• Note that the equation breaks up into two independent parts:
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Dirac’s Dilemma:

• ψB appears to have negative energy


• Why don’t all particles fall down into these states (and down to -∞)?

• Dirac’s excuse: all electron states in the universe up to a certain level (say 

E=0) are filled.

• Pauli exclusion prevents collapse


of states down to E = -∞

• We can “excite” particles out 


of the sea into free states

This leaves a “hole” that looks like

a particle with opposite properties

(positive charge, opposite spin, etc.)
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Dirac originally proposed that this might be the proton



Excuse to Triumph

• 1932: Anderson finds “positrons”

in cosmic rays


• Exactly like electrons but 

positively charged: 

Fits what Dirac was looking for

Dirac predicts the existence of 
anti-matter and it is found





Solutions to the Dirac Equation at Rest:

• Note that all particles have the same mass
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Pedagogical Sore Point

• All the discussion we had thus far about difficulties with relativistic equations, 
(negative probabilities, negative energies) is of historic interest 


• Scientifically, the framework for dealing with quantum mechanics and special 
relativity (i.e. quantum field theory) had not been developed

• The old tools of NR quantum mechanics had reached their limit and new 

ones were necessary.

• In particular, the idea of a “wavefunction” had to be revisited

• Until this was done, there were many difficulties!

• Once QFT was developed, all of these problems go away.


• Both KG and Dirac Equations are valid in QFT

• No negative probabilities, no negative energies


• Nonetheless, the history and its course are rather interesting.



Plane Wave Solutions to the Dirac Equation:

• Consider a solution of the form:


• and place it in the Dirac equation:
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What does this equation look like:

• we found this is:


• So that the Dirac equation reads:
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Determing u

• this means we can identify ħk ↔ p


• We can now construct the column vector u:
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Normalization of the Wavefunction:

• We need to choose a standard “normalization” of the wavefunctions

• Note that multiples of the solutions are still solution

• The normalization convention simply fixes this arbitrary choice:
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Lorentz Properties:

• The Dirac equation “works” in all reference frames.

•  What exactly does this mean?


• i, ħ, m and c are constants that don’t change with reference frames.

• ∂µ and ψ will change with reference frames, however.


• ∂µ is a derivative that will be taken with respect to the space-time 
coordinates in the new reference frame. We’ll call this ∂’µ


• how does ψ change?

• ψ’ = Sψ where ψ’ is the spinor in the new reference frame

•  Putting this together, we have the following transformation of the equation 
when evaluating it in a new reference frame
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The Properties of S

• Since we know how to relate space time coordinates in one reference with 
another (i.e. Lorentz transformation), we can do the same for the 
derivatives


• Using the chain rule, we get:
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Transforming the Dirac Equation:
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Example: The parity operator

• For the parity operator, we want to invert the spatial coordinates while 
keeping the time coordinate unchanged:


• We then have
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Next time

• Read 7.1-7.4


• I would encourage you to work out the examples in 7.6 yourself explicitly 
so that you start to gain some fluency with the Feynman rules


• Lots of notation, lots of stuff going on . . . . 


• please stop by if you have questions!


