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Reminder

- Problem Set 2 due in Box 7 (basement) today by 1700.



Today:

* Introduction into Feynman rules for a basic theory
- We’ve already played around with Feynman diagrams

- Start of the process to learn how to turn these into definite expressions for
the amplitude of a process

 This has been the missing ingredient in our study so far.
- this will be the bulk of the rest of the class
* Introduce the “ABC” theory

* Realistic theory three species of scalar (spin 0) particles (A, B, C) with an
iInteraction

* but it doesn’t correspond to any interaction/particles that we know of

- we study it because it is particularly simple and allows us to study the
“recipe” without too much mathematical complication.

« We’ll see a “real” theory (QED) in the next chapter.



5asic Review of Particle Dynamics

* Interactions between particles are effected by the exchange of particles

 Electromagnetic interactions are the result of the exchange of photons
between electrically charged particles:

pg — (pga p2)



Time ordering of vertices

> +

- Feynman diagrams incorporate possible time orderings

* The vertical exchange illustrates that the amplitude corresponding to the
diagram is agnostic as to which “direction the exchange particle goes”

* The derivation of the Feynman rules through Quantum Field Theory
iIncludes this into consideration.



Components of a Feynman Diagram

- External Lines:
» particles that come in and out in the initial and final state, respectively.
* for spin-0, there is no factor.
* Vertex factors:
- each vertex (i.e. where A, B, C meet) has a factor.
» determines “order” of diagram: order=number of vertices
* Internal lines and Propagators:
 Factors for internal particles exchanged between vertices
* Only applies to particles “internal” to the diagram, not external lines
- Momentum Conservation at vertex:
* (4d) delta function at each vertex enforcing 4-momentum conservation
* Integrals over internal momentum:

* Internal lines have any momentum consistent with 4-momentum conservation



Basic Structure

Theory of 3 “scalar” (spin O) particles that are distinct with one interaction
A, B, C are different types of particles
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More examples




Step 1

« For a given process (e.g. A—B+C, A+C—=A+(C), specify the external lines:




Step 2: diagram by “order”

* Identify all diagrams that contain <N vertices, where N is the order we want to

calculate the amplitude to:
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* Check that each vertex follows the vertex “rules”

A

 There are no second order diagrams for this process



Step 3: Label the momentum flow, vertex factors
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- We can direct the arrows in any way so long as we are consistent

* Introduce a factor of (-ig) for each vertex. (Feynman rule for vertex)



Step 4: Propagators

* Introduce a propagator term for each internal line
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- Note that we have to use the momentum we assigned to the line!



Step 5: energy-momentum conservation

* Introduce a delta function enforcing 4-momentum conservation at each vertex
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- convention: momentum in/out of vertex is (+/-)



Step 6: integrate over internal momenta:

* Introduce an integral over the momentum of each internal line:
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Step 7 perform the integral

* Perform the integrals, leaving a 6 function for overall 4-p conservation
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* In lowest order calculations, each integral will meet with a delta function.



Result:

- Eliminate the 0 function, and the Resulting expression is -iM
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Decay Rate of A—=B+C

* Recall our formula for the two-body decay of a particle:
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* Now that we can calculate the amplitude, we can finish our calculation:
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Scattering rate of A+A—C+C in CM Frame

» From the textbook (6.47), assume M=Ma=Mc¢, Mg =0
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