Lecture 17: QED experiments

H. A. Tanaka

Step I/II: The Feynman Diagram and rules

$$
\begin{gathered}
\frac{1}{(2 \pi)^{4}} \int d^{4} q \frac{-i g_{\mu \nu}}{q^{2}} \\
\bar{u}(3) i g_{e} \gamma^{\mu} v(4) \quad(2 \pi)^{4} \delta^{4}\left(q-p_{3}-p_{4}\right) \\
\bar{v}(2) i g_{e} \gamma^{\nu} u(1) \quad(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-q\right) \\
{\left[\bar{u}(3) \gamma^{\mu} v(4)\right] g_{\mu \nu}\left[\bar{v}(2) \gamma^{\nu} u(1)\right]} \\
i(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \times \frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}} \\
\mathcal{M}=-\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{v}(2) \gamma_{\mu} u(1)\right]
\end{gathered}
$$

Step III: Summing over spins:

- To get $|\mathrm{M}|^{2}$ we need to take the complex conjugate of the M :

$$
\begin{aligned}
\mathcal{M}= & -\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{v}(2) \gamma_{\mu} u(1)\right] \\
\mathcal{M}^{*}= & -\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}}\left[\bar{u}(3) \gamma^{\nu} v(4)\right]^{*}\left[\bar{v}(2) \gamma_{\nu} u(1)\right]^{*} \\
|\mathcal{M}|^{2}= & \frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{u}(3) \gamma^{\nu} v(4)\right]^{*}\left[\bar{v}(2) \gamma_{\mu} u(1)\right]\left[\bar{v}(2) \gamma_{\nu} u(1)\right]^{*} \\
& \sum_{\text {spins }}\left[\bar{u}(3) \gamma^{\mu} v(4)\right]\left[\bar{u}(3) \gamma^{\nu} v(4)\right]^{*}=\operatorname{Tr}\left[\left(\gamma^{\mu}\left(\not p_{4}-M c\right) \gamma^{\nu}\left(\not p_{3}+M c\right)\right]\right.
\end{aligned}
$$

$$
\sum_{\text {spins }}\left[\bar{v}(2) \gamma^{\mu} u(1)\right]\left[\bar{v}(2) \gamma^{\nu} u(1)\right]^{*}=\operatorname{Tr}\left[\gamma_{\mu}\left(\not p_{1}+m c\right) \gamma_{\nu}\left(\not p_{2}-m c\right)\right]
$$

$$
\sum_{\text {spins }}|\mathcal{M}|^{2}=\frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}} \operatorname{Tr}\left[\gamma^{\mu}\left(\not p_{4}-M c\right) \gamma^{\nu}\left(\not p_{3}+M c\right)\right] \operatorname{Tr}\left[\gamma_{\mu}\left(\not p_{1}+m c\right) \gamma_{\nu}\left(\not p_{2}-m c\right)\right]
$$

Step IV (continued)

- Put it all together:
$\sum_{\text {spins }}|\mathcal{M}|^{2}=\frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}} \operatorname{Tr}\left[\gamma^{\mu}\left(\not p_{4}-M c\right) \gamma^{\nu}\left(\not p_{3}+M c\right)\right] \operatorname{Tr}\left[\gamma_{\mu}\left(\not p_{1}+m c\right) \gamma_{\nu}\left(\not p_{2}-m c\right)\right]$
$\sum_{\text {spins }}|\mathcal{M}|^{2}=\frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}} 32 \times\left[\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)+\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)+\right.$

$$
\left.m^{2} c^{2}\left(p_{3} \cdot p_{4}\right)+M^{2} c^{2}\left(p_{1} \cdot p_{2}\right)+2 m^{2} c^{2} M^{2} c^{2}\right]
$$

- Since we are averaging over the initial spins, we need to divide by 4:

$$
\begin{array}{r}
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}} 8 \times\left[\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)+\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)+\right. \\
\left.m^{2} c^{2}\left(p_{3} \cdot p_{4}\right)+M^{2} c^{2}\left(p_{1} \cdot p_{2}\right)+2 m^{2} c^{2} M^{2} c^{2}\right]
\end{array}
$$

Step V: The Kinematics:

$$
\left.\begin{array}{l}
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{g_{e}^{4}}{\left(p_{1}+p_{2}\right)^{4}} 8 \times\left[\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)+\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)+\right. \\
\left.m^{2} c^{2}\left(p_{3} \cdot p_{4}\right)+M^{2} c^{2}\left(p_{1} \cdot p_{2}\right)+2 m^{2} c^{2} M^{2} c^{2}\right]
\end{array}\right\} \begin{aligned}
& p_{1}=(E / c, 0, p) \\
& p_{2}=(E / c, 0,-p) \\
& p_{3}=\left(E / c, p^{\prime} \sin \theta, p^{\prime} \cos \theta\right) \\
& p_{4}=\left(E / c,-p^{\prime} \sin \theta,-p^{\prime} \cos \theta\right) \\
& p=\sqrt{\mu^{+} / c^{2}-m^{2} c^{2}} \quad \begin{array}{l}
p^{\prime}=\sqrt{E^{2} / c^{2}-M^{2} c^{2}} \\
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=g_{e}^{4}\left[1+\left(\frac{\left.m c^{2}\right)^{2}}{E}\right)^{2}+\left(\frac{M c^{2}}{E}\right)^{2}+\left[1-\left(\frac{m c^{2}}{E}\right)^{2}\right]\left[1-\left(\frac{M c^{2}}{E}\right)^{2}\right] \cos ^{2} \theta\right]
\end{array}
\end{aligned}
$$

Electron/Positron Machines around the World

- In the US:
- SLAC (SPEAR, PEP, PEP-II)
- CESR
- Older machines "retire" to become synchrotron radiation sources

LEP

- Before there was the LHC there was LEP
- "Large Hadron Collider"

- "Large Electron Position" Collider

Elsewhere:

- Left: KEK-B ring at KEK (Tsukuba, Japan)
- Top: BES spectrometer (Beijing, China)
- Other machines:
- PETRA at DESY (Hamburg, Germany)
- VEPP at BINP (Novosibirsk, Russia)

Detectors

- Most detectors share a similar "cylindrical onion" design
- Inner tracking region (silicon, drift chambers)
- Electromagnetic calorimetry (measure and identify electron/photon energy)
- Muon detector: identify muons by their penetration through lots of material
- Tracking and other parts of detector in magnetic field for momentum
- Particle identification devices based on "velocity" measurements

Events at BaBar

- $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{e}^{+}+\mathrm{e}^{-}$event at BaBar (Bhabha scattering)
- Note "straightness" of tracks:
- Large deposition in electromagnetic calorimeter
- $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \mu^{+}+\mu^{-}$would look similar, but without large energy deposition in the calorimeter

- "Hadronic" event at BaBar
- Particles like b, c quarks produced which initiate a decay chain
- "Full reconstruction" sometimes possible

Now some physics:

- We derived the amplitude for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow l^{+} l^{-}$
$\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=g_{e}^{4}\left[1+\left(\frac{m c^{2}}{E}\right)^{2}+\left(\frac{M c^{2}}{E}\right)^{2}+\left[1-\left(\frac{m c^{2}}{E}\right)^{2}\right]\left[1-\left(\frac{M c^{2}}{E}\right)^{2}\right] \cos ^{2} \theta\right]$
- $m=$ electron mass, $M=$ lepton mass. Let's ignore the electron mass (E large enough that $\left(\mathrm{mc}^{2} / \mathrm{E}\right)$ is very small:

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=g_{e}^{4}\left[1+\left(\frac{M c^{2}}{E}\right)^{2}+\left[1-\left(\frac{M c^{2}}{E}\right)^{2}\right] \cos ^{2} \theta\right]
$$

- Recalling our cross section formula:

$$
\frac{d \sigma}{d \cos \theta d \phi}=\left(\frac{\hbar c}{8 \pi}\right)^{2} \frac{\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle}{4 E^{2}} \frac{\left|p_{f}\right|}{\left|p_{i}\right|}
$$

- Integrate over the θ, ϕ to obtain the total cross section:

$$
\sigma=\frac{\pi}{3}\left(\frac{\hbar c \alpha}{E}\right)^{2} \sqrt{1-\left(M c^{2} / E\right)^{2}}\left[1+\frac{1}{2}\left(\frac{M c^{2}}{E}\right)^{2}\right]
$$

Ratio of cross sections:

- $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \mu^{+}+\mu^{-}$has a very distinct signature in the detector
- "Normalize" $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \tau^{+}+\tau^{-}$in the detector by taking the ratio:

$$
R_{\tau \mu}=\frac{\sigma_{\tau^{+} \tau^{-}}}{\sigma_{\mu^{+} \mu^{-}}}=\frac{\sqrt{1-\left(M_{\tau} c^{2} / E\right)^{2}}}{\sqrt{1-\left(M_{\mu} c^{2} / E\right)^{2}}} \times \frac{1+\frac{1}{2}\left(M_{\tau} c^{2} / E\right)^{2}}{1+\frac{1}{2}\left(M_{\mu} c^{2} / E\right)^{2}}
$$

- Note: numerator is imaginary when $E<M_{\tau} \mathrm{C}^{2}$: this is a threshold requirement

step E, count $\tau^{+}+\tau^{-}$and $\mu^{+}+\mu^{-}$events
- Ratio is effectively $\mathrm{R}_{\tau \mu}$
- Energy $\mathrm{R}_{\tau \mu}(\mathrm{E})$ depends on the spin of the τ :
- If the particle were a scalar or vector, it would have a different E-dependence
- Measures τ mass:
W. Bacino et al.

Angular Distribution

- From our amplitude expression:

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=g_{e}^{4}\left[1+\left(\frac{M c^{2}}{E}\right)^{2}+\left[1-\left(\frac{M c^{2}}{E}\right)^{2}\right] \cos ^{2} \theta\right]
$$

- if we go to even higher energies $\mathrm{E} \gg \mathrm{Mc}^{2}$, we obtain the simple form:

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=g_{e}^{4}\left[1+\cos ^{2} \theta\right]
$$

- Recalling our cross section expression $\frac{d \sigma}{d \cos \theta d \phi}=\left(\frac{\hbar c}{8 \pi}\right)^{2} \frac{\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle}{4 E^{2}} \frac{\left|p_{f}\right|}{\left|p_{i}\right|}$

Cross Section at High Energy:

- If we use our same approximation: $\mathrm{Mc}^{2} \ll \mathrm{E}$
$\sigma=\frac{\pi}{3}\left(\frac{\hbar c \alpha}{E}\right)^{2} \sqrt{1-\left(M c^{2} / E\right)^{2}}\left[1+\frac{1}{2}\left(\frac{M c^{2}}{E}\right)^{2}\right]$
- becomes:
$\begin{aligned} \sigma=\frac{\pi}{3}\left(\frac{\hbar c \alpha}{E}\right)^{2} & =2.2 \times 10^{-5} \mathrm{mb} / \mathrm{E}^{2}\left(\mathrm{GeV}^{2}\right) \\ & =22 \mathrm{nb} / \mathrm{E}^{2}\left(\mathrm{GeV}^{2}\right)\end{aligned}$

$E(\mathrm{GeV})$	Cross section (nb)
14	0.44
22	0.18
34	0.075
43	0.047

Bhabha Scattering:

- Similarly to $l^{+} l^{-}$production, we can also produce $\mathrm{e}^{+} \mathrm{e}^{-}$pairs

Quark Production in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

- Similarly to $l^{+} l^{-}$production, we can also produce quark/anti-quark pairs

- All the calculation steps are the same except:
- Quarks do have not unit charge (1/3, 2/3) need to account for this
- Quarks have colour: three possibility for pair production

Cross section for quark production

- Let's use our assumption that $\mathrm{E}>\mathrm{Mc}^{2}$, where M is now the mass of the quark

$$
\sigma=\frac{\pi}{3}\left(\frac{\hbar c \alpha}{E}\right)^{2} \quad \sigma_{\mu^{+} \mu^{-}}=\frac{\pi}{3}\left(\frac{\hbar c \alpha}{E}\right)^{2} \Rightarrow \sigma_{q_{i} \bar{q}_{i}}=3 Q_{i}^{2} \times \sigma_{\mu^{+} \mu^{-}}
$$

- Sum over all the quark species that are produced in the collision.

$$
R=\frac{\sum_{i} \sigma_{q \bar{q}_{i}}}{\sigma_{\mu^{+} \mu^{-}}}=3 \times \sum Q_{i}^{2}
$$

- The quark species produced will depend on the energy
- Below the charm threshold ($\sim 3.8 \mathrm{GeV}$) :

$$
R=3 \times\left((2 / 3)^{2}+(1 / 3)^{2}+(1 / 3)^{2}\right)=2
$$

- Between charm/bottom thresholds:

$$
R=3 \times\left((2 / 3)^{2}+(1 / 3)^{2}+(1 / 3)^{2}+(2 / 3)^{2}\right)=10 / 3
$$

- Above bottom threshold: ($\sim 10 \mathrm{GeV}$)

$$
R=3 \times\left((2 / 3)^{2}+(1 / 3)^{2}+(1 / 3)^{2}+(2 / 3)^{2}+(1 / 3)^{2}\right)=11 / 3
$$

Ratio of Quark/Muon Production

- Situation is much more complicated than our naive picture
- However, the need for the factor of 3 from color is unambiguous.

The spinning electron

- On considering the splittings in the spectra of hydrogen atom, Goudsmit and Uhlenbeck introduced the idea of a "spinning electron"
- The spinning of a charged object produces a magnetic moment that results in spin-orbit coupling

- They submitted it to Ehrenfest and met with him
- Ehrenfest: a charge that rotates like that impossible
- Too bad, already submitted it!
"Well, it's a nice idea, though it may be wrong. But you don't yet have a reputation so you have nothing to lose."

Other thoughts:

- Others had already considered this?
- Heisenberg:
- Congratulations "on your courageous note."
- "What did you do with the factor of two?"
- Goudsmit and Uhlenbeck:
-Why is it courageous?
- What factor of two?
- As it turns out, the splittings are larger by x2 then one would naively expect from nonrelativistic considerations.

Pauli: "I was so stupid when I was young!"

Thomas: special relativity introduces a factor of two

The "gyromagnetic ratio"

$$
\mu=g \mu_{B} s / \hbar \quad \quad \mu_{B}=\frac{e \hbar}{2 m}
$$

- Ratio of the magnetic moment to spin times the Bohr magneton
- As it turns out, this is not exactly 2 for an electron
- $a=(g-2 /) 2 \sim 0.00115965218073(28)$ (current measurement)
- The departure from "2" is called the "anomalous moment"
- results from higher order corrections
- first calculated by Julian Schwinger in 1948
- $a \sim a / 2 \pi=0.0011614$

The muon g-2 experiment

- Predicted: $(\mathrm{g}-2) / 2=(1165918.81 \pm 0.38) \times 10^{-9}$
- Measured: $(\mathrm{g}-2) / 2=(1165920.80 \pm 0.63) \times 10^{-9}$

F'IG. 3. Positron time spectrum overlaid with the fitted 10 parameter function $\left(\chi^{2} /\right.$ dof $\left.=3818 / 3799\right)$. The total event sample of $0.95 \times 10^{9} e^{+}$with $E \geq 2.0 \mathrm{GeV}$ is shown.

